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1 Supplemental Experimental Procedures

1.1 Simulation model

We use a whole-cell model of protein translation to simulate the dynamics of protein production

(Shah et al., 2013). Briefly, the model assumes a fixed total number of ribosomes and tRNAs, and

it describes how these entities initiate and elongate a fixed supply of mRNAs.

We define a genome with n = 4862 genes, each with a prescribed coding sequence, and fixed

mRNA abundance A

i

. Gene i encodes an mRNA of length L

i

codons and has a corresponding

probability of translation initiation, denoted p

i

, which is described below.

Each codon of type j is decoded by one of 41 iso-accepting tRNA species, denoted �(j), which

has a fixed total abundance T

t

�(j) in the cell. Each molecule of tRNA species �(j) is either free in

the cell, or bound, along with a ribosome, to a codon of type j on an mRNA in the cell. Thus, the

total number of tRNAs of type �(j) can be decomposed into those that are currently bound and

those that are currently free: T

t

�(j) = T

b

�(j) + T

f

�(j). Similarly, the total number of ribosomes, Rt,

can be decomposed into bound and free: Rt = R

b+R

f . Moreover, the number of bound ribosomes

always equals the total number of bound tRNAs of all species: Rb =
P41

k=1 T
b

k

.

Initiation and elongation events in the cell occur at rates that are determined by the current

state of system (the number of free ribosomes, and the locations of all bound ribosomes) and by

the underlying physical parameters of the cell. The underlying physical parameters are simply the

volume of the cell, and the characteristic lengths and di↵usion constants of ribosomes and tRNA

molecules. The time between subsequent events are exponentially distributed, and Monte Carlo

simulations proceed by incrementing time according to exponential deviates and re-computing rates

of subsequent events (Gillespie, 1977).
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1.1.1 Di↵usion of ribosomes and tRNAs

In a cell of fixed volume, the average time required for any given molecule to move to one position,

known as the characteristic time ⌧ , is given by

⌧ =
�

2

6D
(S1)

where D is the di↵usion coe�cient of the molecule and � is its characteristic length. The character-

istic times of tRNAs and ribosomes are ⌧

t

= 4.45⇥ 10�7 s and ⌧

r

= 5⇥ 10�4 s, respectively (Shah

et al., 2013).

1.1.2 Translation initiation rates

Let ⇢
i

be the initiation rate at an mRNA of gene i. The rate ⇢

i

is set to zero if any of the first 10

codons of the mRNA is currently bound by a ribosome. Otherwise, the rate is

⇢

i

= p

i

R

f

⌧

r

N

r

. (S2)

The term R

f

⌧rNr
in this equation denotes the rate at which free ribosomes (Rf ) di↵use to a given

mRNA molecule. And the term p

i

denotes the probability with which a ribosome will actually

initiate translation of an mRNA molecule, once it has di↵used to its 5’ end. The parameters p

i

allow us to account for sequence-specific variation in initiation rates among genes.

1.1.3 Translation elongation rates

Consider a ribosome bound at codon of type j at position k on an mRNA. Its elongation rate is

set to zero if any of the following k + 10 codons of the mRNA are currently occupied by another

ribosome. Otherwise, the elongation rate depends on the number of free cognate tRNAs for that

codon T

f

�(j) and the wobble parameter associated with the tRNA-codon pair w

j

. If there is a

perfect match between the tRNA and the codon, then w

j

= 1. Else w

ry/yr

= 0.64 if the mismatch

is due to a purine-pyrimidine wobble or w

rr/yy

= 0.61 if the mismatch is due to purine-purine or

pyrimidine-pyrimidine wobble (Curran & Yarus, 1989; Lim & Curran, 2001). The elongation rate
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is thus given by

T

f

�(j)wj

⌧

t

N

t

(S3)

In addition, the time spent by a ribosome in selecting the cognate tRNA depends on the relative

abundances of various competing tRNAs as well as organism specific kinetic rates associated with

ribosomal proofreading. Using the method described in (Shah et al., 2013) we estimate the average

time s spent by the ribosome in kinetic proofreading to select the correct tRNA. As a result,

accounting for tRNA competition, the actual elongation rate of a codon is

T

f

�(j)wj

s

⌧

t

N

t

(S4)

1.1.4 Translation termination

We assume that translation termination is an instantaneous event that occurs immediately after

elongation of the last codon at position L. Upon termination the pool of free ribosomes and

free tRNAs corresponding to the codon j

0 at position L � 1 each increases by 1 (Rf ! R

f + 1;

T

f

�(j)0 ! T

f

�(j)0 + 1) .

1.1.5 Estimating initiation probabilities using ribosome-profiling data

We use analytical approximation of the whole-cell simulation model (Shah et al., 2013) described

above to estimate the gene-specific probability of translation initiation once a free ribosome reaches

the 5’ end of an mRNA. The gene-specific initiation probability p

i

is given by Eqn. 27 in (Shah

et al., 2013) as follows:

p

i

⇡ R

b

i

x

A

i

L

i

✓P61
j=1

uj,i

wjT
t
�(j)

◆ (S5)

where

x =
⌧

r

N

r

s

0.15Rt

⌧

t

N

t
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The term x depends on the bio-physical parameters of tRNAs, ribosomes and volume of an

yeast cell, whose values are described above. The term
R

b
i

AiLi
describes the density of ribosome on

an mRNA of gene i and is equivalent to the translation e�ciency (TE) described as:

TE =
RPF RPKM

mRNA RPKM
(S6)

Thus we estimate the gene-specific initiation probability from ribosome profiling data by plugging

in the experimentally determined TE ratios in Eqn. S5.

1.2 Elongation arrest by cycloheximide

In ribosome profiling experiments, ribosomes are often stabilized by addition of chemicals that

arrest elongation to prevent run-o↵s during sample preparation. Cycloheximide (CHX) is usually

the preferred elongation inhibitor (Ingolia et al., 2009; Zinshteyn & Gilbert, 2013; Brar et al., 2012;

Gerashchenko et al., 2012; Artieri & Fraser, 2014b; McManus et al., 2014). However, it is unclear

whether addition of CHX biases estimates of ribosome densities on mRNAs and hence subsequently

a↵ects inferences of protein translation dynamics based on these estimates. To explore how addition

of CHX a↵ects ribosome densities, we simulate protein translation in a cell by modeling the action

of CHX.

CHX arrests ribosomes on mRNAs by binding with a tRNA in the E-site of the ribosome

(Schneider-Poetsch et al., 2010). However, the E-site of a ribosome is almost always empty except

for a short period immediately following an elongation and translocation event (Chen et al., 2011).

As a result, upon addition of CHX to the cell, a recently elongated ribosome becomes a potential

target for CHX. We model the action of CHX by assuming that whenever a ribosome elongates a

codon, there is a constant probability with which CHX binds and arrests it. Assuming that the

binding of CHX is a reversible process, we model CHX dissociation with a constant rate per bound

CHX.

We begin by first simulating protein translation in a normal cell yeast till it reaches equilibrium

(1500 sec). After this, whenever a ribosome at codon positions k of an mRNA elongates to k+1, the

ribosome is arrested at k + 1 by CHX with constant probability p

chx�on

. CHX dissociates from a
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bound ribosome at with a constant rate r
chx�off

. We vary the probability of CHX-binding p

chx�on

and its dissociation rate r

chx�off

to understand its e↵ects on ribosome densities and dynamics

of protein translation. We find that when CHX acts rapidly and has a low dissociation rate

(p
chx�on

= 0.2, r
chx�off

= 0.01), we see peak excess relative ribosome-footprint density (e0
j

Eqn

S10) following the first ten codons is ⇠ 400% , which is to comparable to ramps observed in

ribosome profiling experiments with CHX pre-treatment (Figure S1) but significantly higher than

the ramp observed without CHX in both simulations (⇠ 20%) and in the current study (⇠ 60%).

This suggests that a large ramp of ribosome densities in the 5’ region is likely an artifact of the

action of CHX (Gerashchenko & Gladyshev, 2014).

1.3 Mapping ribosome profiling reads

The S. cerevisiae reference genome sequence and transcript models were downloaded from Ensembl

at ftp://ftp.ensembl.org/pub/release-74/fasta/saccharomyces_cerevisiae/dna/ and ftp:

//ftp.ensembl.org/pub/release-74/gtf/saccharomyces_cerevisiae/.

Data was processed using a framework written in Python. Reads were trimmed from the right

of adapter sequences according to the specific library preparations used to generate each data

set: reads from poly-adenlyated libraries were trimmed of all trailing As, and reads from li-

braries prepared with a pre-adynlyated linker (either ’CTGTAGGCACCATCAAT’ or ’TCGTAT-

GCCGTCTTCTGCTTG’) were trimmed to the first position from the left at which the next 10

bases in the read were within a hamming distance of 1 from the first 10 bases of the linker sequence

or to where a su�x of the read exactly matched a prefix of the linker sequence. For our data, 8

nt of randomized barcode sequence was trimmed from the left of each read and appended to the

read’s name. Reads originating from ribosomal RNAs were pre-filtered by mapping to an index of

yeast rRNA sequences with bowtie2 version 2.2.1. Filtered reads were then mapped to the yeast

genome and spliced transcript models using tophat2 v2.0.9. Reads mapping to any tRNA or other

noncoding RNA genes were discarded. For each annotated coding sequence, counts of the number

of uniquely mapped reads on the sense strand whose 5’-most mapped base occupied every position

from 50 nt upstream of the start codon to 50 nt downstream of the stop codon were calculated. To
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calculate codon occupancies, only trimmed reads of length 28, 29 and 30 (for which the identity of

the codon occupying the A-site of the ribosome could be most reliably inferred) were used. Reads

of length 28 and 29 were assigned to the codon at position +14, 15, or 16 from the start of the

read, and reads of length 30 were assigned to the codon at position +15, 16, or 17. To calculate

read densities, reads of all lengths were included.

Data sources: (GSE* indicates GEO accession number)

Flash-freeze: GSE75897

Ingolia: GSE13750 (Ingolia et al., 2009)

Zinshteyn: GSE45366 (Zinshteyn & Gilbert, 2013)

Gerashchenko: personal communication with Maxim Gerashchenko (Gerashchenko et al., 2012)

Artieri: GSE50049 (Artieri & Fraser, 2014b)

Mcmanus: GSE52119 (McManus et al., 2014)

Guydosh: GSE52968 (Guydosh & Green, 2014)

Lareau: GSE58321 (Lareau et al., 2014)

Gardin: SRP044053 (Gardin et al., 2014)

Pop: GSE63789 (Pop et al., 2014)

Jan: GSE61012 (Jan et al., 2014)

Williams: GSE61011 (Williams et al., 2014)

Nedialkova: GSE67387 (Nedialkova & Leidel, 2015)

1.4 Estimating tRNA abundances from RNA-seq

To estimate tRNA abundances, RNA-seq reads from the Ribo-Zero-treated sample were mapped to

annotated S. cerevisiae tRNA loci (downloaded from Ensembl) using Bowtie, allowing up to one

mismatch and sampling alignments for multiply mapping reads (options -n 1 -l 25 -e 100 -M 1

--best --strata). The total number of reads corresponding to each tRNA anticodon were tallied,

and wobble parameters were used to estimate cognate tRNA abundances for individual codons.
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1.5 Metagene analyses of ribosome and mRNA densities

To understand how ribosome and mRNA densities vary along the length of a transcript, we estimate

position-specific ribosome densities of individual genes into a composite metagene. Let x
i,j

be the

number of mapped RPF reads to position j of gene i based on its A-site. In order to avoid biases

induced due genes with low coverage of reads, we restricted our analyses to genes with at least 128

mapped total mapped reads. To account for di↵erences in initiation rates between di↵erent genes,

we calculate the normalized ribosome density z

i,j

at codon position j by normalizing the mapped

reads at that codon by the mean number of mapped reads in that gene.

z

i,j

=
x

i,j

(
P

Li
j=1 xi,j)/Li

(S7)

L

i

= Length of gene i in codons

We calculate the excess ribosome densities e
j

at a particular position j by averaging the normalized

ribosome density z

i,j

across all genes whose length is at least j (L
i

<= j).

e

j

=

P
N

i=1 zi,jP
N

i=1 �i(j)
(S8)

�

i

(j) =

8
>><

>>:

1 if L
i

� j

0 if L
i

< j

(S9)

N = Number of genes

The amount of excess ribosome densities e

j

at the 5’ ends of genes vary with each dataset.

As a result, the excess ribosome densities asymptote at di↵erent values depending on the dataset,

making it harder to compare the peaks of ribosome densities across datasets. To account for these

di↵erences, we estimated relative excess densities e

0
j

by normalizing excess ribosome-densities e

j

with excess ribosome densities in the region spanning 450 and 500 codons. This region was chosen

based on the observation that excess ribosome densities in all ribosome profiling dataset reach an
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asymptote around 450-500 codons. The relative excess ribosome densities e

0
j

were calculated as

follows:

e

0
j

=
e

j

(
P500

j=450 ej)/51
(S10)

We report peak excess ribosome densities as the maximum of e0
j

in a region spanning 10 to 500

codons. We ignore the first few codons as they are highly variable and result in sharp peaks due

to continued initiation events.

We calculate excess mRNA coverage at each nucleotide position j similar to excess RPF reads

described above. Let y
i,j

be the number of times mRNA reads overlapped position j of gene i. The

normalized mRNA coverage at g
i,j

at nucleotide position j is obtained by normalizing the coverage

at that nucleotide by the mean coverage of all nucleotides in that ORF.

g

i,j

=
y

i,j

(
P

L

0
i

j=1 yi,j)/L
0
i

(S11)

L

0
i

= Length of gene i in nucleotides

We calculate the excess mRNA coverage h
j

at a particular position j by averaging the normalized

mRNA coverage g

i,j

across all genes whose length is at least j (L0
i

<= j).

h

j

=

P
N

i=1 gi,jP
N

i=1 �i(j)
(S12)

�

i

(j) =

8
>><

>>:

1 if L0
i

� j

0 if L0
i

< j

(S13)

The relative excess mRNA coverage h

0
j

based on 1350-1500 nucleotides were calculated as follows:

h

0
j

=
h

j

(
P1500

j=1350 hj)/151
(S14)

To estimate the degree of bias in mRNA measurements in the 3’ ends of genes, we scale excess
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mRNA coverage at a nucleotide j by 1350-1500 nucleotides from the stop codon as follows:

h

00
j

=
h

j

(
P

L

0
m�1500

j=L

0
m�1350 hj)/151

(S15)

L

0
m

= Max length of genes in nucleotides

1.6 Comparing 5’ and 3’ codon-specific ribosome densities

To estimate codon-specific ribosome densities in the 5’ and 3’ ends of genes, we begin by first

calculating normalized ribosome densities within a gene z

i,j

(Eqn. S7) for all genes with at least

250 codons. Normalizing ribosome-densities within a gene removes the e↵ect of di↵erences in

initiation rates among genes when comparing normalized reads across many genes. The average

ribosome density of all ribosome reads at codon type k in the 5’ (v5
0

k

) and 3’ (v3
0

k

) ends across the

genome is then given by

v

50
k

=

P
N

i=1

P200
j=18c(i,j)=k

z

i,j

P
N

i=1 n
50
i,k

(S16)

v

30
k

=

P
N

i=1

P
Li
j=2018c(i,j)=k

z

i,j

P
N

i=1 n
30
i,k

(S17)

n

50
i,k

= Number of codons of type k in gene i in codons 1  j  200

n

30
i,k

= Number of codons of type k in gene i in codons 201  j  L

i

c(i, j) = Identity of codon at position j of gene i

1.7 Estimating codon-specific elongation times

Most theoretical studies of protein translation assume a negative relationship between the elonga-

tion time of a codon and its tRNA abundance. To test this, we estimate codon-specific elongation

times from ribosome densities as follows:

In order to avoid the confounding e↵ects of 5’ ribosomal ramp on our estimates of codon-specific

ribosome densities, we restrict our analyses to genes with at least 250 codons and only consider
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RPF reads mapped from codon position 200 onwards. Let x

i,j

be the number of mapped RPF

reads to position j of gene i. The normalized ribosome density z

0
i,j

at codon position j >= 200 is

given by normalizing the mapped reads at that codon by the mean number of mapped reads from

codon position 200 to L

i

.

z

0
i,j

=

8
>><

>>:

xi,j

(
PLi

j=200 xi,j)/(Li�199)
if j � 200

NA if j < 200

(S18)

Normalizing ribosome-densities within a gene removes the e↵ect of di↵erences in initiation rates

among genes when comparing normalized reads across many genes. The average ribosome density

of all ribosome reads at codon type k (v
k

) across the genome is then given by

v

k

=

P
N

i=1

P
Li
j=2008c(i,j)=k

z

0
i,j

P
N

i=1 ni,k

(S19)

n

i,k

= Number of codons of type k in gene i in codons 200  j  L

i

c(i, j) = Identity of codon at position j of gene i

The expected elongation time of a codon is then directly proportional to average codon-specific

ribosome density, v
k

because codons with longer elongation times have higher average ribosome

densities.

1.8 Estimating protein synthesis rates

We estimate protein synthesis rates of individual genes using the densities of ribosomes on their

mRNAs. However, the ribosome densities per mRNA as estimated by taking ratios of RPF RPKM

and mRNA RPKM are likely biased. The main source of this bias is the presence of a 5’ ramp of

RPF reads that varies with position along a transcript.
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1.8.1 Ramp correction factor

In order to obtain unbiased estimates of gene-specific ribosome-densities, we apply a position-

dependent correction factor to RPF reads that accounts for the ramp. However, the observed ramp

of ribosome densities is partly a result of codon ordering within genes in addition to experimental

artifacts. Our position-dependent correction factor accounts for the ribosomal ramp due to ex-

perimental artifacts by explicitly taking into account the contribution of codon usage dependent

ramp.

The total excess ribosome density at a position j across all gene is given by e

j

(see above,

Eqn. S8). To calculate the expected excess ribosome density at a position j due to codon ordering

within a gene, we first calculate average ribosome density for codon k, v

k

as described above

(Eqn. S19). The expected excess ribosome density d

j

at position j due to patterns of codon usage

is given as follows:

The relative codon-usage expected ribosome density q

i,j

at position j of gene i is given by

normalizing the expected ribosome density v

c(i,j) at that codon by the mean expected ribosome

density for that gene.

q

i,j

=
v

c(i,j)

(
P

Li
j=1 vc(i,j))/Li

(S20)

L

i

= Length of gene i in codons

c(i, j) = Identity of codon at position j of gene i

The average codon-usage expected ribosome density at position j (d
j

) across the genome is then

given by

d

j

=

P
N

i=1 qi,jP
N

i=1 �i(j)
(S21)

�

i

(j) =

8
>><

>>:

1 if L
i

� j

0 if L
i

< j

(S22)
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The ramp correction factor f

j

at position j along any gene is then defined as the ratio of

observed ramp e

j

over the expected ramp d

j

.

f

j

=
e

j

d

j

(S23)

1.8.2 Unbiased estimate of ribosome density per mRNA

Let x
i,j

be the number of mapped RPF reads and y

i,j

be the number of mapped mRNA reads to

position j of gene i. The unbiased estimate of ribosome density r

i

per mRNA for gene i is defined

as

Mean corrected RPF reads =

P
Li
j=1

xi,j

fj

L

i

(S24)

Mean mRNA reads =

P
Li
j=1 yi,j

L

i

(S25)

r

i

=
Mean corrected RPF reads

Mean mRNA reads

=

P
Li
j=1

xi,j

fjP
Li
j=1 yi,j

(S26)

where f

j

is the ramp correction factor (see above, Eqn. S23).
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1.8.3 Initiation e�ciency

We estimate initiation e�ciency of a genes using the analytic approximations for the initiation

probability p

i

based on steady-state behavior of a whole cell simulation described above (Eqn. S5).

p

i

⇡ R

b

i

x

A

i

L

i

✓P61
j=1

uj,i

wjT
t
�(j)

◆

where

x =
⌧

r

N

r

s

0.15Rt

⌧

t

N

t

see Methods (1. Simulation model section) above for details on parameter notations and values.

R

b
i

AiLi
describes the ribosome density per mRNA on gene i. Here we substitute

R

b
i

AiLi
with unbi-

ased estimates of ribosome density per mRNA r

i

(Eqn. S26) in Eqn. S5. Moreover, estimates of

codon-specific ribosome densities v
k

(Eqn. S19) reflect average elongation times of codons – codons

with longer elongation times have higher ribosome densities. Therefore, we substitute expected

elongation time of a codon given by 1
wjT

t
�(j)

in Eqn. S5 with estimates of codon-specific ribosome

densities v

k

. As a result, our initiation e�ciency p

E

i

for gene i is estimated solely from ribosome

profiling data and is defined as

p

E

i

⇡ r

i

xG

P61
j=1 uj,ivk

(S27)

where G is the global scaling parameter, which scales r

i

such that the total number of ribosomes

within a cell are 200, 000, total number of mRNAs are 60, 000 and total number of tRNAs are

3, 300, 000 based on empirical estimates (Shah et al., 2013).

1.8.4 Protein synthesis rates

Protein synthesis rate S

i

of a gene i within a cell depend on total number of mRNAs for that gene

(A
i

) and initiation rate per mRNA (⇢
i

Eqn. S2) and the number of free ribosomes. Here we modify

Eqn. S2) by substituting initiation probabilities (p
i

) with estimates of initiation e�ciencies (pE
i

)
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based on profiling data (Eqn. S27).

S

i

= p

E

i

A

i

R

f

⌧

r

N

r

(S28)

In estimating S

i

, we assume that 15% of the total 200,000 ribosomes are free and the rest are bound

to mRNAs, such that R

f = 3 ⇥ 104. Furthermore, we scale mRNA abundances as measured by

mRNA RPKM such that the total number of mRNAs are 60,000 (
P

i

A

i

= 6⇥ 104).
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2 Supplemental Text

2.1 Co-translational folding and inter-domain linkers

During protein translation, a growing polypeptide chain begins to fold as soon as it emerges from

the ribosome - a process known as co-translational folding. Several studies have suggested that

pausing of ribosome at specific instances is necessary for the nascent polypeptide to take native-like

folds (Kimchi-Sarfaty et al., 2007; Pechmann & Frydman, 2013). If ribosomal pausing significantly

a↵ects co-translation folding, then we expect a higher density of ribosomes in regions between

protein domains. To test this, we downloaded domain assignments for individual genes in the

S. cerevisiae genome from SGD – http://downloads.yeastgenome.org/curation/calculated_

protein_info/domains/domains.tab based on InterProScan http://www.ebi.ac.uk/interpro

on Jan 14, 2014. Domain assignments were based on InterProScan classifications (Jones et al.,

2014) obtained from the Superfamily database (Wilson et al., 2009) and Pfam database.

2.2 Widespread pauses after polybasic but not at proline residues

Aside from the abundance of cognate tRNA, the ribosome-footprint density at a particular codon

in an ORF might also be influenced by interactions between the emerging nascent polypeptide

and the ribosome. Indeed, extensive polybasic tracts can stall translation, presumably because of

electrostatic interactions between the nascent polypeptide and the negatively charged exit tunnel

(Lu & Deutsch, 2008; Tuller et al., 2011; Brandman et al., 2012; Charneski & Hurst, 2013). However,

the relationship between polybasic tracts and ribosome densities has been the subject of some

debate (Charneski & Hurst, 2013; Artieri & Fraser, 2014a). To help resolve this issue, we estimated

excess ribosome-footprint densities (z
i,j

, Eqn. S7) in windows of 10 amino acids with varying number

of positively charged residues. We observed a sharp peak of ribosome density at the end of highly

positively charged regions (defined as six arginine or lysine residues within a 10 amino-acid window),

which would position the basic residues within the exit tunnel (Figure S3). The pause amplitude

steadily decreased as the number of basic residues within the window decreased, but pausing was

still apparent with as few as three basic residues within the 10-amino-acid window.
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Our results on pausing resembled the findings of other recent studies (Lu & Deutsch, 2008;

Tuller et al., 2011; Brandman et al., 2012; Charneski & Hurst, 2013). However, this pausing signal

was absent in every ribosome-profiling dataset with CHX pre-treatment (Figure S3), whereas it was

present in six of eight datasets without CHX pre-treatment, which provides further evidence that

drug treatment obscures the locations of natural elongation pauses. When simulating ribosome

densities surrounding polybasic stretches in our whole-cell model, we found a relative depletion

of ribosomes in polybasic stretches (Figure S3N), which indicates that elongation stalls within

polybasic stretches were not caused by biased codon usage and that the observed excess ribosome-

footprint density likely underestimated the direct e↵ect of polybasic stretches on elongation rates.

Previous studies have also reported an excess of elongating ribosomes at sites where a proline

amino acid is positioned in the P site of the ribosome (Artieri & Fraser, 2014a; Martens et al.,

2015). This increased density is attributed to the di�culty of forming a peptide bond between the

incoming amino acid in the A site and proline in the P site. When we looked for excess ribosome

density at P-site proline codons, we also observed a strong accumulation of ribosomes in datasets

that used CHX pre-treatment (Figure S2). However, this stall at P-site prolines was not observed

in either our flash-freeze dataset or most other published flash-freeze datasets (Figure S2). Thus,

most (if not all) of the excess ribosome density previously observed at P-site proline codons can be

attributed to the e↵ects of CHX pre-treatment.

2.3 Contribution of translational control to proportional synthesis

Although narrower than reported in earlier ribosome-profiling studies, the IE distribution that we

observed was still large enough to enable the cell to tune synthesis rates via translational control.

One scenario in which this might be important is in the proportional synthesis of the subunits for

multi-protein complexes. A recent genome-wide study of protein-synthesis rates in E. coli and S.

cerevisiae concluded that components of multi-subunit complexes are usually synthesized in pre-

cise proportion to their stoichiometry (Li et al., 2014). In E. coli, the subunits of multi-protein

complexes are usually encoded on the same polycistronic mRNA and thus can be synthesized in

di↵erent proportions only if they have di↵erent translation-initiation rates. In eukaryotes, however,
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the subunits of protein complexes are encoded on separate mRNAs, which enables proportional

synthesis to be achieved through control of mRNA abundance (via transcription rate and mRNA

half-life). Nonetheless, translational control might still compensate for di↵erences in mRNA abun-

dance and thereby achieve more precise stoichiometry of synthesis rates. To explore this possibility,

we examined the synthesis rates, mRNA abundances, and IEs of the subunits of stably associated

complexes previously shown to undergo proportional synthesis (Li et al., 2014). mRNAs encoding

subunits of heterodimeric complexes had roughly similar abundances (within 2 fold), indicating that

most of their proportional synthesis is achieved through coordinated mRNA levels (Figure S6D).

The same was true for mRNAs encoding multi-protein complexes, after accounting for subunit

stoichiometry (within ⇡2 fold, Figure S6E), as well for mRNAs encoding heterodimeric complexes

containing alternative paralogous subunits (within 1.4 fold, Figure S6F). These observations were

consistent with the narrow range of IEs in yeast; with limited translational control, proportional

synthesis requires roughly proportional mRNA levels. However, in 12 out of 18 cases subunit sto-

ichiometry was more accurately reflected by synthesis rates than by mRNA abundances (Figures

S6E-G), as quantified by the coe�cients of variation (Figure S6G). For example, the subunits of the

heterodimeric FACT complex were translated at equal levels even though Spt16-encoding mRNA

was 59% more abundant than the Pob3-encoding mRNA. Similarly, in the mitochondrial alpha-

ketoglutarate dehydrogenase complex, higher expression of the Kdg2 subunit relative to the Kdg1

subunit (which have 2:1 stoichiometry in the complex) was achieved entirely at the level of trans-

lation. We also found that mRNAs encoding proportionally synthesized subunits of heterodimeric

complexes tended to have similar IEs (R2 = 0.72, Figure S6D), suggesting that such mRNAs might

be coregulated at the level of translation. Collectively, these results suggest a tendency for transla-

tional control to compensate for small di↵erences in mRNA levels to help achieve more proportional

synthesis.

2.4 Regression model

Initiation e�ciency (pE) of a gene depends on several features of a coding sequence. In order to

identify a set of features that explain the most variation in p

E , we use the multiple regression
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framework in R (R Core Team, 2012). We regressed the p

E of a gene against its length, mRNA

abundance (RPKM), 5’ UTR length and its GC content, 5’ cap folding energy, and number of

upstream ATGs in 5’ UTR (uATG). We restricted the analyses to 2549 genes with experimentally

verified 5’ UTR lengths and number of upstream ATGs (Arribere & Gilbert, 2013). To estimate 5’

cap folding energy we used sequences of length 70 nts from the 5’ end of the mRNA transcript as

sequences of these lengths showed the highest correlation with TE ratios (Figure S7). We calculated

the folding energies using RNAfold algorithm from Vienna RNA package (Hofacker et al., 1994) at

37 �C. The values of pE , mRNA RPKM and protein length were log-transformed in the regression

model.

To identify which features explain the highest amount of variation in initiation e�ciencies, we

used Akaike’s Information Criteria (AIC) for model selection. We performed both step-up and step-

down model selection using the stepAIC function in MASS package in R. We find that the multiple

regression model that best explains the variation in p

E even after penalizing for model complexity

includes all the 6 variables considered (Table S6). This model explains ⇠ 58% of variation in p

E

across all the genes considered. We find that initiation e�ciencies scale positively with predicted

folding energies and mRNA abundances. This indicates that genes with weaker 5’ cap structure

and RNA structure around the start site have higher rates of initiation. In contrast, genes with a

higher number of uATGs and longer 5’ UTRs and coding sequence length have lower pE . Moreover,

genes that have higher mRNA abundances also tend to have higher pE and hence higher ribosome

densities (TE) on them. This suggests that genes under selection for higher protein abundances

are selected both at the level of transcription – leading to higher mRNA abundances and at the

translation level – leading to higher ribosome densities.
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Figure S1 (preceding page): Analyses of the 5’ ramp of ribosomes, Related to Figure 1. (A-D)
Metagene analyses of RPF density, performed as in Figure 1D, comparing results of the current
study (flash-freeze) to those of published studies. Published datasets in (A) are labeled by the first
author’s name: Guydosh (Guydosh & Green, 2014), Lareau (Lareau et al., 2014), Gardin (Gardin
et al., 2014), Pop (Pop et al., 2014), Jan (Jan et al., 2014), Williams (Williams et al., 2014),
Nedialkova (Nedialkova & Leidel, 2015), Ingolia (Ingolia et al., 2009), Gerashchenko (Gerashchenko
et al., 2012), Zinshteyn (Zinshteyn & Gilbert, 2013), McManus (McManus et al., 2014), Artieri
(Artieri & Fraser, 2014). (B) Same panel as in (A) with datasets using CHX-pretreatment colored
in red and datasets without CHX-pretreatment colored in gray. (C-D) Datasets from Gerashchenko
(Gerashchenko & Gladyshev, 2014) with varying levels of CHX-pretreatment under both unstressed
(C) and stressed (D) conditions. (E-H) Comparison of codon-specific RPFs within and beyond
the 5’ ramp in datasets in (A-D). (I-K) Metagene analyses of RPF density based on the whole-
cell simulation model (Shah et al. 2013), performed as in Figure 1D. Simulations with CHX
pre-treatment were performed as described in Section 2 of the Supporting File. We simulated
protein synthesis under no-CHX, and either (I) four di↵erent CHX arrest probabilities (p

chx�on

)
and a fixed CHX dissociation rate (r

chx�off

), or (J) a fixed CHX arrest probability (p
chx�on

) and
four di↵erent CHX dissociation rates (r

chx�off

). Increasing p
chx�on

led to higher ramps, whereas
increasing r

chx�off

led to lower ramps as well as a shift of the peak ribosome density towards the
3’ end. (K) Metagene analysis of RPF density observed in the flash-freeze experiment compared
with the results of the whole-cell simulation model. Otherwise, as in (I).
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Figure S2: Relationship between cognate tRNA abundances and codon-specific ribosome densities,
Related to Figure 2. (A) Correlation between codon-specific excess ribosome densities from the
flash-freeze dataset and cognate tRNA abundances estimated using RNA-seq (Table S1). Otherwise,
as in Figure 2B. (B) Correlation between codon-specific excess ribosome densities and cognate
tRNA abundances in simulations with (black) and without (gray) CHX pretreatment. Otherwise,
as in Figure 2B. (C-E) Correlation between codon-specific excess ribosome densities at the A-
, P- and E-sites and cognate tRNA abundances, respectively. (F-H). Proline-specific ribosome
densities in 13 ribosome-profiling experiments. RPF reads were assigned to the A-, P-, and E-site
positions based on the distance from the 5’ ends of fragments, to calculate proline-specific excess
ribosome densities. Published datasets are labeled by the first author’s name: Guydosh (Guydosh
& Green, 2014), Lareau (Lareau et al., 2014), Gardin (Gardin et al., 2014), Pop (Pop et al., 2014),
Jan (Jan et al., 2014), Williams (Williams et al., 2014), Nedialkova (Nedialkova & Leidel, 2015),
Gerashchenko 2014 (Gerashchenko & Gladyshev, 2014), Ingolia (Ingolia et al., 2009), Gerashchenko
(Gerashchenko et al., 2012), Zinshteyn (Zinshteyn & Gilbert, 2013), McManus (McManus et al.,
2014), Artieri (Artieri & Fraser, 2014). Datasets using CHX-pretreatment colored in red and
datasets without CHX-pretreatment colored in gray. Otherwise, as in Figure 2B.
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Figure S3 (preceding page): Analyses of ribosome stalling near polybasic tracts, Related to Figure 2.
(A-N) Metagene analysis of normalized ribosome density surrounding polybasic tracts in our flash-
freeze, twelve other published ribosome-profiling experiments and whole-cell simulations. Regions
within ORFs that contained the indicated number of basic residues (arginine and lysine) within
a stretch of 10 amino acids were aligned by the start of the region. Plotted are the normalized
ribosome densities (z

i,j

, Eqn. S7) observed at each codon position. Published datasets are labeled
by the first author’s name: Guydosh (Guydosh & Green, 2014), Lareau (Lareau et al., 2014),
Gardin (Gardin et al., 2014), Pop (Pop et al., 2014), Jan (Jan et al., 2014), Williams (Williams
et al., 2014), Nedialkova (Nedialkova & Leidel, 2015), Ingolia (Ingolia et al., 2009), Gerashchenko
(Gerashchenko et al., 2012), Zinshteyn (Zinshteyn & Gilbert, 2013), McManus (McManus et al.,
2014), Artieri (Artieri & Fraser, 2014). Datasets using CHX-pretreatment names in red and datasets
without CHX-pretreatment named in black.
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Figure S4: Relationship between elongation dynamics and either domain architecture or protein
secondary structure. Related to Figure 3. (A) Cumulative distributions of normalized ribosome
densities within and outside of protein-folding domains, considering ORFs with at least 250 codons
but ignoring the first 200 codons in each ORF. Otherwise, as in Figure 3A. (B) Cumulative distri-
butions of normalized ribosome densities within and outside of protein-folding domains. Domain
assignments were based on InterProScan classifications (Jones et al. 2014) using the Pfam database
(Bateman et al. 2002). Otherwise, as in Figure 3A. (C) Cumulative distributions of normalized
ribosome densities within the indicated classes of protein secondary structures (helices, sheets and
loops). Secondary structure assignments for proteins were obtained from (Pechmann and Frydman
2013). Otherwise, as in Figure 3A. D) Relationship between elongation dynamics and domain
architecture for individual amino acids. Cumulative distributions of normalized ribosome densities
within and outside of protein-folding domains, analyzed for each amino acid. Mean normalized ri-
bosome densities (z

i,j

, Eqn. S7) for codons within the domain-encoding and non-domain-encoding
regions were individually calculated for each ORF. Panels are labeled with the single-letter code for
each amino acid. Serine codons are partitioned into two sets with 4 and 2 codons (S and Z, respec-
tively). Statistically significant (p < 0.05) slowing outside of protein-folding domains is indicated
(asterisk). Otherwise, as in Figure 3A.
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Figure S5: 3’ bias observed in RNA-seq datasets and e↵ect of mRNA enrichment methods on mRNA abundance measurements,
Related to Figure 4. (A) Metagene analysis of RNA-seq read coverage in ten ribosome-profiling experiments. Otherwise, as
in Figure 4B. (B-G) Pairwise comparisons of mRNA abundances (Log10 RPKM) following mRNA enrichment by the indicated
methods. Otherwise, as in Figure 4A. For comparison, Figure 4A is repeated as panel A.
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Figure S6 (preceding page): Analyses of IEs and TEs in log-phase yeast cells, Related to Figure 5.
(A) Relationship between TE values (TE, Eqn. S6) and IE values (pE , Eqn. S27). (B) Distribution
of IE values. Otherwise, as in Figure 5A. (C) Distributions of TE measurements from nine published
ribosome-profiling experiments. Ribosome-profiling datasets are labeled by the first author’s name:
Guydosh (Guydosh & Green, 2014), Gardin (Gardin et al., 2014), Pop (Pop et al., 2014), Nedialkova
(Nedialkova & Leidel, 2015), Ingolia (Ingolia et al., 2009), Gerashchenko (Gerashchenko et al.,
2012), Zinshteyn (Zinshteyn & Gilbert, 2013), McManus (McManus et al., 2014), Artieri (Artieri
& Fraser, 2014). Datasets using CHX-pretreatment names in red and datasets without CHX-
pretreatment named in gray. Otherwise, as in Figure 5A. (D) mRNA abundance and translational
control contribute to proportional synthesis, Analysis of complexes with two equimolar subunits.
For each heterodimeric complex, the mRNA abundances (left), estimated synthesis rates (middle),
and IEs (right) of the individual subunits are plotted (with the subunit whose systematic name is
first alphabetically on the x axis). All of the heterodimeric complexes characterized in Li et al.
(2014) are shown, with the exception of the Smc2/4 complex, which substantially deviates from
proportional synthesis in both our dataset and the published dataset. Dashed lines indicate 2-fold
di↵erences. (E) Analysis of multi-protein complexes. For each complex, the mRNA abundances,
synthesis rates, and IEs of its subunits are plotted as a function of subunit stoichiometry. Dashed
line passes through the origin and mean of the data-points. (F) Analyses of complexes containing
paralogous subunits. For each complex, data for alternative subunits are plotted in the same
column relative to the data for the constitutive subunit (Tub2 for the ↵�-tubulin complex, Sec23
for the COPII vesicle coat). (G) Comparison of the di↵erences in mRNA abundances with those
of synthesis rates for each of the complexes in (D) and (E). Data were normalized to subunit
stoichiometry, and coe�cients of variation (CVs) were calculated using all subunits within each
complex. CVs were calculated similarly for the Sec23- and Tub2-containing complexes, except that
data for paralogous subunits (Tub1 and Tub3; Sec24, Sfb2, and Sfb3) were first summed.
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Figure S7: Analyses of the relationship between gene length and TE, Related to Figure 6. (A)
Influence of window length on the correlation between predicted RNA structure and IE. Correlations
between predicted RNA secondary structures near the 5’ cap (5’ cap FE) and IE (pE , Eqn. S27), as
a function of the length of the folded sequence. RNAfold was used to estimate RNA folding energies
for windows of the indicated lengths downstream of the 5’-cap. (B) Relationship between TE and
ORF length observed when analyzing the flash-freeze dataset. The best linear least-squares fit to the
data is shown (line), with the Pearson R. (C) Relationship between TE and ORF length observed
after excluding data from within the 5’ ramp. Only genes with 250 codons were considered, and
RPF and RNA-seq reads mapping to the first 200 codons of each ORF were excluded. Otherwise,
as in (B). (D-L) Relationship between TE and ORF length and the role of 3’ bias observed in RNA-
seq reads in published ribosome-profiling datasets. For each ORF, mRNA RPKM calculated based
on reads mapping to the entire ORF is shown as green dots. mRNA RPKM when calculated based
only on reads mapping to the last 200 codons of an ORF are shown as purple dots. Ribosome-
profiling datasets are labeled by the first author’s name: Guydosh (Guydosh & Green, 2014),
Gardin (Gardin et al., 2014), Pop (Pop et al., 2014), Nedialkova (Nedialkova & Leidel, 2015),
Ingolia (Ingolia et al., 2009), Gerashchenko (Gerashchenko et al., 2012), Zinshteyn (Zinshteyn &
Gilbert, 2013), McManus (McManus et al., 2014), Artieri (Artieri & Fraser, 2014). Datasets using
CHX-pretreatment names in red and datasets without CHX-pretreatment named in gray.



Pearson’s correlation (tRNA GCN * Wobble) tRNA abundance 
(Microarray * Wobble) tAI RiboDensity at 

A-site

tRNA abundance (RNA-
seq * Wobble) 0.748 0.608 0.713 0.268

(tRNA GCN * Wobble) 0.778 0.947 0.512

tRNA abundance 
(Microarray * Wobble) 0.713 0.459

tAI 0.509

Spearman's correlation (tRNA GCN * Wobble) tRNA abundance 
(Microarray * Wobble) tAI RiboDensity at 

A-site
tRNA abundance (RNA-

seq * Wobble) 0.777 0.605 0.752 0.319

(tRNA GCN * Wobble) 0.785 0.917 0.560

tRNA abundance 
(Microarray * Wobble) 0.711 0.463

tAI 0.532

Table S1 - Correlations between estimates of tRNA abundances and codon-specific ribosome-densities, Related to Figure 2

Table S1 - Correlations between estimates of tRNA abundances and codon-specific ribosome-densities, Related to Figure 2



AA Codon tRNA 
(anticodon)

tRNA gene copy 
number Wobble (tRNA GCN * Wobble) tAI tRNA abundance 

(RNA-seq)
tRNA abundance (RNA-

seq * Wobble)
tRNA abundance 

(Microarray)
tRNA abundance 

(Microarray * Wobble) RiboDensity at A-site

A GCA TGC 5 1 5 0.30795 384682 384682 26087 26087 1.4224238

A GCC AGC 11 0.64 7.04 0.487685 136141.44 41927.04 0.6982879

A GCG TGC 5 0.64 3.2 0.098522 246196.48 16695.68 1.7913012

A GCT AGC 11 1 11 0.67734 212721 212721 65511 65511 0.7439787

C TGC GCA 4 1 4 0.246305 106137 106137 84453 84453 1.3124677

C TGT GCA 4 0.64 2.56 0.108128 67927.68 54049.92 0.8129126

D GAC GTC 16 1 16 0.985222 1789916 1789916 105539 105539 0.9749501

D GAT GTC 16 0.64 10.24 0.432512 1145546.24 67544.96 0.9771609

E GAA TTC 14 1 14 0.862069 1618235 1618235 121285 121285 0.9358888

E GAG CTC 2 1 2 0.399015 393379 393379 NA 8663.214286 1.3490997

F TTC GAA 10 1 10 0.615764 104391 104391 81287 81287 0.6956495

F TTT GAA 10 0.64 6.4 0.27032 66810.24 52023.68 0.686277

G GGA TCC 3 1 3 0.184729 287325 287325 61092 61092 1.5260655

G GGC GCC 16 1 16 0.985222 826342 826342 70286 70286 1.4416823

G GGG CCC 2 1 2 0.182266 129338 129338 21404 21404 1.7256386

G GGT GCC 16 0.64 10.24 0.432512 528858.88 44983.04 1.0667916

H CAC GTG 7 1 7 0.431034 727396 727396 81702 81702 0.9154641

H CAT GTG 7 0.64 4.48 0.189224 465533.44 52289.28 0.9922004

I ATA TAT 2 1 2 0.123233 54352 54352 39556 39556 1.394014

I ATC AAT 13 0.64 8.32 0.576355 586391.04 67769.6 0.7039792

I ATT AAT 13 1 13 0.800493 916236 916236 105890 105890 0.6284445

K AAA TTT 7 1 7 0.431034 222273 222273 82386 82386 0.978243

K AAG CTT 14 1 14 1 397111 397111 83036 83036 1.0943089

L CTA TAG 3 1 3 0.184729 94608 94608 63675 63675 0.9165169

L CTC GAG 1 1 1 0.061576 63503 63503 13613 13613 1.1024675

L CTG TAG 3 0.64 1.92 0.059113 60549.12 40752 1.4565058

L CTT GAG 1 0.64 0.64 0.027032 40641.92 8712.32 0.9176823

L TTA TAA 7 1 7 0.431034 271592 271592 49562 49562 0.7272969

L TTG CAA 10 1 10 0.753695 709768 709768 96605 96605 0.7904184

M ATG CAT 10 1 10 0.615764 266917 266917 67121 67121 0.8415256

N AAC GTT 10 1 10 0.615764 378101 378101 110849 110849 0.6898425

N AAT GTT 10 0.64 6.4 0.27032 241984.64 70943.36 0.7078108

P CCA TGG 10 1 10 0.615776 286531 286531 112091 112091 1.0842912

P CCC AGG 2 0.64 1.28 0.08867 36940.8 11043.84 1.3106768

P CCG TGG 10 0.64 6.4 0.197044 183379.84 71738.24 3.1205299

P CCT AGG 2 1 2 0.123153 57720 57720 17256 17256 1.0239082

Q CAA TTG 9 1 9 0.554187 436225 436225 89917 89917 0.8659004

Q CAG CTG 1 1 1 0.238916 89093 89093 NA 9990.777778 1.6325536

R AGA TCT 11 1 11 0.67734 683001 683001 98864 98864 1.1308364

R AGG CCT 1 1 1 0.278325 106890 106890 12911 12911 1.939357

R CGA ACG 6 0.61 3.66 0.000037 261137.95 36380.4 3.6442612

R CGC ACG 6 0.64 3.84 0.26601 273980.8 38169.6 1.6633606

R CGG CCG 1 1 1 0.061576 60792 60792 15330 15330 4.0202765

R CGT ACG 6 1 6 0.369458 428095 428095 59640 59640 1.0459032

S TCA TGA 3 1 3 0.184797 86913 86913 58804 58804 1.0015308

S TCC AGA 11 0.64 7.04 0.487685 507436.8 58654.72 0.7072965

S TCG CGA 1 1 1 0.12069 34793 34793 49376 49376 1.3549748

S TCT AGA 11 1 11 0.67734 792870 792870 91648 91648 0.6624122

T ACA TGT 4 1 4 0.246373 105862 105862 47598 47598 1.3252482

T ACC AGT 11 0.64 7.04 0.487685 244374.4 36396.16 0.6976534

T ACG CGT 1 1 1 0.140394 113104 113104 16861 16861 1.7572598

T ACT AGT 11 1 11 0.67734 381835 381835 56869 56869 0.692477

V GTA TAC 2 1 2 0.123239 145923 145923 33845 33845 0.9784524

V GTC AAC 14 0.64 8.96 0.62069 515950.72 56675.84 0.6841453

V GTG CAC 2 1 2 0.162562 118162 118162 44651 44651 1.2778867

V GTT AAC 14 1 14 0.862069 806173 806173 88556 88556 0.6336201

W TGG CCA 6 1 6 0.369458 298500 298500 60236 60236 1.7898831

Y TAC GTA 8 1 8 0.492611 343867 343867 91388 91388 0.9352348

Y TAT GTA 8 0.64 5.12 0.216256 220074.88 58488.32 0.8397308

Z AGC GCT 2 1 2 0.123153 249948 249948 61334 61334 1.1973314

Z AGT GCT 2 0.64 1.28 0.054064 159966.72 39253.76 0.9498069

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.



Table S3 – Analysis of 3’ bias in RNA-seq datasets, Related to Figure 4. 
	

Pearson	correlation	between	mRNA	
abundances	(Log10	RPKM)	 Arava	 Holstege	 Causton	 Sun	
Ingolia	 0.645	 0.743	 0.626	 0.74	
Gerashchenko	 0.7	 0.828	 0.747	 0.862	
Zinshteyn	 0.652	 0.773	 0.645	 0.75	
McManus	 0.667	 0.79	 0.733	 0.797	
Artieri	 0.715	 0.852	 0.788	 0.848	
Guydosh	 0.66	 0.777	 0.666	 0.791	
Gardin	 0.673	 0.828	 0.728	 0.846	
Pop	 0.727	 0.845	 0.774	 0.894	
Nedialkova	 0.722	 0.878	 0.8	 0.884	
Unselected	 0.753	 0.875	 0.819	 0.883	
Ribo-Zero	 0.761	 0.869	 0.812	 0.882	
Ribo-Minus	 0.722	 0.839	 0.76	 0.84	
Dynabeads	 0.719	 0.869	 0.795	 0.897	
	 	 	 	 	

Pearson	correlation	between	ratio	of	
mRNA	abundances	and	ORF	length	(Log10)	

Relative	to	

Arava	
Relative	to	

Holstege	
Relative	to	

Causton	
Relative	to	

Sun	
Ingolia	 -0.653	 -0.341	 -0.331	 -0.344	
Gerashchenko	 -0.607	 -0.45	 -0.406	 -0.468	
Zinshteyn	 -0.619	 -0.353	 -0.325	 -0.344	
McManus	 -0.551	 -0.308	 -0.306	 -0.277	
Artieri	 -0.547	 -0.403	 -0.38	 -0.367	
Guydosh	 -0.65	 -0.436	 -0.392	 -0.43	
Gardin	 -0.638	 -0.496	 -0.44	 -0.496	
Pop	 -0.496	 -0.305	 -0.298	 -0.328	
Nedialkova	 -0.521	 -0.272	 -0.261	 -0.237	
Unselected	 -0.112	 0.206	 0.072	 0.217	
Ribo-Zero	 -0.107	 0.209	 0.077	 0.226	
Ribo-Minus	 -0.061	 0.24	 0.105	 0.244	
Dynabeads	 -0.51	 -0.411	 -0.376	 -0.444	

	



	 Metagene	5’	excess Metagene	3’	excess
Metagene	excess	

3’/5’
Gene-specific	median	

ratio	3’/5’
Gene-specific	median	

excess	3’/5’

Unselected 0.891 1.096 23.00% 1.223 22.30%
RiboZero 0.879 1.125 28.00% 1.284 28.40%
RiboMinus 0.893 1.367 53.10% 1.532 53.20%
Dynabeads 0.549 2.104 283.20% 3.757 275.70%
Guydosh 0.782 1.284 64.20% 1.563 56.30%
Gardin 0.535 2.014 276.70% 3.586 258.60%
Pop 0.562 1.789 218.20% 2.918 191.80%

Nedialkova 0.753 1.17 55.50% 1.493 49.30%
Ingolia 0.812 1.234 52.00% 1.416 41.60%

Gerashchenko 0.786 1.206 53.50% 1.46 46.00%
Zinshteyn 0.587 2.137 263.70% 3.284 228.40%
McManus 0.709 1.368 93.00% 1.699 69.90%
Artieri 0.726 1.397 92.30% 1.791 79.10%

Table S4 - Excess mRNA coverage in 3’ relative to 5’ based on 50 codons (150 nt), Related to Figure 4.

Table S4 - Excess mRNA coverage in 3’ relative to 5’ based on 50 codons (150 nt), Related to Figure 4.



RPF Guydosh Lareau Gardin Pop Jan Williams Nedialkova Ingolia Gerashchenko Zinshteyn McManus Artieri
Flash-freeze 0.98 0.962 0.96 0.986 0.971 0.949 0.986 0.982 0.972 0.971 0.973 0.972
Guydosh 0.966 0.942 0.983 0.957 0.934 0.98 0.979 0.961 0.973 0.958 0.971
Lareau 0.937 0.975 0.938 0.886 0.971 0.975 0.941 0.951 0.929 0.95
Gardin 0.96 0.946 0.908 0.964 0.94 0.95 0.923 0.954 0.957
Pop 0.967 0.935 0.987 0.986 0.973 0.961 0.962 0.97
Jan 0.978 0.968 0.957 0.952 0.954 0.964 0.955

Williams 0.934 0.926 0.926 0.943 0.946 0.935
Nedialkova 0.978 0.975 0.961 0.967 0.974
Ingolia 0.965 0.98 0.961 0.962

Gerashchenko 0.945 0.966 0.952
Zinshteyn 0.966 0.96
McManus 0.967

mRNA Guydosh Gardin Pop Nedialkova Ingolia Gerashchenko Zinshteyn McManus Artieri
Flash-freeze 0.77 0.818 0.888 0.909 0.686 0.844 0.749 0.816 0.883
Guydosh 0.942 0.921 0.899 0.971 0.908 0.952 0.888 0.886
Gardin 0.939 0.902 0.923 0.926 0.933 0.857 0.901
Pop 0.937 0.882 0.955 0.878 0.9 0.934

Nedialkova 0.853 0.941 0.866 0.928 0.943
Ingolia 0.884 0.936 0.849 0.842

Gerashchenko 0.869 0.898 0.922
Zinshteyn 0.858 0.865
McManus 0.93

TE Guydosh Gardin Pop Nedialkova Ingolia Gerashchenko Zinshteyn McManus Artieri
Flash-freeze 0.542 -0.025 0.655 0.594 0.479 0.498 0.55 0.553 0.561
Guydosh 0.626 0.854 0.797 0.924 0.674 0.873 0.702 0.806
Gardin 0.553 0.448 0.701 0.632 0.607 0.43 0.574
Pop 0.795 0.838 0.81 0.802 0.804 0.854

Nedialkova 0.818 0.685 0.744 0.761 0.727
Ingolia 0.729 0.907 0.777 0.797

Gerashchenko 0.633 0.774 0.757
Zinshteyn 0.673 0.731
McManus 0.784

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.

Table S5 – Correlations between RPF, mRNA and TE across profiling datasets, Related to Figure 5.

dweinberg

dweinberg

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.

Table S2 - Codon-specific estimates of ribosome-densities and tRNA abundances, Related to Figure 2.

Table S5 – Correlations between RPF, mRNA and TE across profiling datasets, Related to Figure 5.







Table S6 – Model selection of determinants of initiation efficiencies, Related to Figure 7. 
	

Model - Initiation Efficiency R2 
    
log(pE) ~ (5’ cap folding energy) 0.144 
log(pE) ~ log(Length) 0.2295 
log(pE) ~ log(mRNA) 0.3925 
log(pE) ~ log(Length) + (5’ cap folding energy) 0.3262 
log(pE) ~ log(mRNA) + (5’ cap folding energy) 0.448 
log(pE) ~ log(Length) + log(mRNA) +(5’ cap folding energy) 0.5521 
log(pE) ~ log(Length) + log(mRNA) + (5’ cap folding energy) + (5’ UTR length)  0.5604 
log(pE) ~ log(Length) + log(mRNA) + (5’ cap folding energy) + (5’ UTR length) + (# uATGs) 0.5658 
log(pE) ~ log(Length) + log(mRNA) + (5’ cap folding energy) + (5’ UTR length) + (# uATGs) + (UTR GC) 0.5675 
log(pE) ~ log(Length) + log(mRNA) + (5’ cap folding energy) + (5’ UTR length) + (# uATGs presence/absence) 0.5784 
log(pE) ~ log(Length) + log(mRNA) + (5’ cap folding energy) + (5’ UTR length) + (# uATGs presence/absence) + (UTR GC) 0.5812 

	


