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SUMMARY

Ribosome-footprint profiling provides genome-wide
snapshots of translation, but technical challenges
can confound its analysis. Here, we use improved
methods to obtain ribosome-footprint profiles and
mRNA abundances that more faithfully reflect
gene expression in Saccharomyces cerevisiae. Our
results support proposals that both the beginning
of coding regions and codons matching rare tRNAs
are more slowly translated. They also indicate that
emergent polypeptides with as few as three basic
residues within a ten-residue window tend to slow
translation. With the improved mRNA measure-
ments, the variation attributable to translational con-
trol in exponentially growing yeast was less than
previously reported, and most of this variation could
be predicted with a simple model that considered
mRNA abundance, upstream open reading frames,
cap-proximal structure and nucleotide composition,
and lengths of the coding and 50 UTRs. Collectively,
our results provide a framework for executing and in-
terpreting ribosome-profiling studies and reveal key
features of translational control in yeast.

INTRODUCTION

Although most cellular mRNAs use the same translation machin-

ery, the dynamics of translation can vary between mRNAs

and within mRNAs, often with functional consequences. For

example, strong secondary structure within the 50 UTR of an

mRNA can impede the scanning ribosome, thereby reducing

the rate of protein synthesis (Kozak, 1986; Andersson and Kur-
Cell R
land, 1990; Bulmer, 1991; Kudla et al., 2009; Tuller et al., 2010,

2011; Plotkin and Kudla, 2011; Ding et al., 2012; Bentele et al.,

2013). The accessibility of the 50 cap (Godefroy-Colburn et al.,

1985; Richter and Sonenberg, 2005) and the presence of small

open reading frames (ORFs) within 50 UTRs referred to as up-

stream ORFs (uORFs) (Kozak, 1986; Ingolia et al., 2009; Brar

et al., 2012; Zur and Tuller, 2013) can also modulate the rate of

translation initiation (Sonenberg and Hinnebusch, 2009). Like-

wise, codon choice, mRNA structure, and the identity of the

nascent polypeptide can influence elongation rates (Varenne

et al., 1984; Brandman et al., 2012). In addition, differences in

elongation rates can influence co-translational protein folding,

localization of the mRNA or protein, and in extreme cases the

rate of protein production (Kimchi-Sarfaty et al., 2007; Xu

et al., 2013; Zhou et al., 2013). Finally, stop-codon readthrough

can introduce alternative C-terminal regions that affect protein

stability, localization, or activity (Dunn et al., 2013). Despite

known examples of regulation at each of these stages of trans-

lation, translation is largely controlled at initiation, which is rate

limiting for most mRNAs (Andersson and Kurland, 1990; Bulmer,

1991; Chu and von der Haar, 2012; Shah et al., 2013).

Variation in protein abundances observed in yeast cells largely

reflects variation in mRNA abundances, indicating that much

of gene regulation occurs at the level of mRNA synthesis and

decay (Greenbaum et al., 2003; Csárdi et al., 2015). However,

differences in translation rates also contribute. Studies using mi-

croarrays for global polysome profiling indicate that ribosome

densities for different mRNAs vary over a 100-fold range (from

0.03 to 3.3 ribosomes per 100 nucleotides), indicating extensive

translation control in Saccharomyces cerevisiae (Arava et al.,

2003). More recently, the use of ribosome-footprint profiling

has enabled transcriptome-wide analyses of translation using

high-throughput sequencing, which again suggested a nearly

100-fold range of translational efficiencies (TEs) in log-phase

yeast (Ingolia et al., 2009).
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The ribosome-profiling method has itself undergone refine-

ments over the last few years. Here, we build upon these ad-

vances and present improved ribosome-profiling and mRNA

sequencing (mRNA-seq) datasets for log-phase yeast. Compar-

isons to many previous datasets reveal protocol-specific biases

that can influence interpretation of ribosome-profiling experi-

ments. With these insights, we then address several classical

questions and ongoing debates in protein translation, such as

the influence of tRNA abundances and nascent-peptide

sequence on elongation rates. Our improved datasets also

constrict the differences in TEs observed in log-phase yeast,

such that the gene-to-gene variability that does remain can be

largely predicted using a simple statistical model that considers

only six features of the mRNAs.

RESULTS

Less Perturbed Ribosome Footprints
Protocols for analyzing polysome profiles or capturing ribosome

footprints (referred to as ribosome-protected fragments, or

RPFs) typically involve treating cells with the elongation inhibitor

cycloheximide (CHX) to arrest the ribosomes prior to harvest (In-

golia et al., 2009; Gerashchenko et al., 2012; Zinshteyn and

Gilbert, 2013; Artieri and Fraser, 2014; McManus et al., 2014).

An advantage of CHX pre-treatment is that it prevents the run-

off of ribosomes that can otherwise occur during harvesting

(Ingolia et al., 2009). However, this treatment can also have

some undesirable effects. Because CHX does not inhibit transla-

tion initiation or termination, pre-treatment of cultures leads to

ribosome accumulation at start codons and depletion at stop co-

dons (Ingolia et al., 2011; Guydosh and Green, 2014; Pelechano

et al., 2015). In addition, because CHX binding to the 80S ribo-

some is both non-instantaneous and reversible, the kinetics of

CHX binding and dissociation presumably allow newly initiated

ribosomes to translocate beyond the start codon. Another

possible effect of CHX treatment is that ribosomes might

preferentially arrest at specific codons that do not necessarily

correspond to codons that are more abundantly occupied by ri-

bosomes in untreated cells. Although effects of CHX pre-treat-

ment have minimal consequence for analyses performed at the

gene level, i.e., comparisons of the same gene in different condi-

tions, or comparisons between different genes after discarding

reads in the 50 regions of ORFs, CHX pre-treatmentmay have se-

vere consequences for analyses that require single-codon

resolution.

The potential effects of CHX pre-treatment near the start

codon have been discussed since the introduction of ribo-

some profiling, where an alternative protocol with flash-

freezing and no CHX pre-treatment is also presented (Ingolia

et al., 2009). Indeed, many recent ribosome-profiling experi-

ments avoid CHX pre-treatment (Gardin et al., 2014; Gerash-

chenko and Gladyshev, 2014; Guydosh and Green, 2014;

Jan et al., 2014; Lareau et al., 2014; Pop et al., 2014; Williams

et al., 2014; Nedialkova and Leidel, 2015). However,

consensus on the ideal protocol has not yet been reached,

in part because the influence of alternative protocols on the

interpretation of translation dynamics has not been systemat-

ically analyzed.
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Here, we implemented a filtration and flash-freezing protocol

to rapidly harvest yeast cultures. Importantly, this protocol mini-

mized the time the cells experience starvation, which leads to

rapid ribosome run-off (Ingolia et al., 2009; Gardin et al., 2014;

Guydosh and Green, 2014). The protocol did include CHX in

the lysis buffer to inhibit elongation that might occur during

RNase digestion, although we doubt this precaution was

necessary.

The original ribosome-profiling protocol also used cDNA

circularization (Ingolia et al., 2009), while some subsequent

protocols instead ligate to a second RNA adaptor prior to

cDNA synthesis (Guo et al., 2010). Both approaches can intro-

duce sequence-specific biases at the 50 ends of reads, which

are not expected to influence results of analyses performed at

the level of whole mRNAs but might influence results of codon-

resolution analyses. Borrowing from methods developed for

small-RNA sequencing (Jayaprakash et al., 2011; Sorefan

et al., 2012), we minimized these biases by ligating a library of

adaptor molecules that included all possible sequences at the

eight nucleotides nearest to the ligation junction. Using this liga-

tion protocol with a rapidly harvested, flash-frozen sample, we

generated 74.3 million RPFs for log-phase yeast.

The 50 Ramp of Ribosomes
Using the 50 ends of RPFs, we inferred the codon at the A site of

each footprint (Ingolia et al., 2009). Analysis of all mapped reads

revealed the expected three-nucleotide periodicity along the

ORFs, as well as ribosome accumulation at the start and stop

codons (Figures 1A and 1B).

To examine the global landscape of 80S ribosomes, we aver-

aged the position-specific RPF densities of individual genes into

a composite metagene, in which each gene was first normalized

for its overall density of RPFs (i.e., RPKM of RPFs) and then

weighted equally in the average (Equation S10). A small excess

of ribosome density was observed in the first �200 codons

compared to the remainder of the ORF (Figure 1C). The trend to-

ward decreasing ribosome density with codon position was also

evident on a gene-by-gene basis: 82% of genes exhibited

declining raw RPF reads along their entire gene-length, based

on linear-regression of RPF reads with codon position (binomial

test, p < 10�15), with the 50-to-30 decrease in ribosome densities

for a gene of average length (�500 codons) averaging �43%.

Much larger 50 ramps are observed in other studies (Ingolia

et al., 2009; Gerashchenko et al., 2012; Zinshteyn and Gilbert,

2013; Artieri and Fraser, 2014; Guydosh and Green, 2014;

McManus et al., 2014), which is attributed to their use of CHX

pre-treatment (Ingolia et al., 2009; Gerashchenko and Glady-

shev, 2014) (Figure S1). However, CHX pre-treatment cannot

explain the more modest ramp observed in our dataset, since

our protocol did not involve such treatment.

The 50 ramp of ribosomes has previously been attributed to

slower elongation due to preferential use of codons correspond-

ing to low-abundance cognate tRNAs at the 50 ends of genes

(Tuller et al., 2010). To determine the contribution of codon us-

age, we tested whether differences in RPF densities between

the 50 and 30 ends of genes depended on codon choice. Surpris-

ingly, for each of the 61 sense codons, the average density of

RPFs was 33% greater on average when the codon fell within
ors
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Figure 1. Less Perturbed RPFs Reveal a

Codon-Independent 50 Ramp

(A and B) Metagene analyses of RPFs. Coding

sequences were aligned by their start (A) or stop

(B) codons (red shading). Plotted are the numbers

of 28–30-nt RPF reads with the inferred ribosomal

A site mapping to the indicated position along

the ORF.

(C) Metagene analyses of RPFs and RNA-seq

reads (mRNA). ORFs with at least 128 total map-

ped reads between ribosome-profiling (red) and

RNA-seq (blue) samples were individually

normalized by the mean reads within the ORF, and

then averaged with equal weight for each codon

position across all ORFs (e0 j in Equation S10 and h0 j
in Equation S14).

(D) Comparison of codon-specific RPFs as a

function of the 50 ramp. For each of the codons,

densities of RPFs with ribosomal A sites mapping

to that codon were calculated using either only the

ramp region of each ORF (codons 1–200) or the

remainder of each ORF (v5k in Equation S16 and

v3k in Equation S17, respectively). The diagonal

line indicates the result expected for no difference

between the two regions.

See also Figure S1.
the first 200 codons of an ORF (Figures 1D and S1), which

showed that differential codon usage alone cannot explain the

50 ramp. Consistent with these experimental results, simulation

of protein translation in a yeast cell, using a whole-cell stochastic

model of yeast translation (Shah et al., 2013), indicated that

codon ordering could account for at most a 20% ramp (Fig-

ure S1). Thus, codon ordering might explain some of the

�60% ramp observed in our dataset, but the majority of this

ramp is likely caused by other mechanisms (see Discussion).

Codon-Specific Elongation Dwell Times Are Inversely
Correlated with tRNA Abundances
The 61 sense codons varied in their average RPF densities by

more than 6-fold (Figure 1D), indicating that different codons

are decoded at different rates. Molecular biologists have long

assumed that such differences in elongation rates are caused

by corresponding differences in the cellular abundances of

cognate tRNAs (Andersson and Kurland, 1990; Bulmer, 1991).

Several early experiments provide empirical support for this

view (Varenne et al., 1984; Sørensen and Pedersen, 1991), but

early analyses of ribosome-profiling results do not find any

relationship between ribosome density and cognate tRNA

abundance expected from this model (Ingolia et al., 2011; Li

et al., 2012; Qian et al., 2012; Charneski and Hurst, 2013; Zinsh-

teyn and Gilbert, 2013). However, the datasets analyzed in these

studies were all from experiments that used CHX pre-treatment.
Cell Reports 14, 1787–1799, F
At least three considerations help

explain why CHX pre-treatment would

disrupt the correlation between tRNA

abundances and measured ribosome

densities at the A site. The first is that

CHX, once bound to a ribosome, allows
for an additional round of elongation before halting ribosomes

(Schneider-Poetsch et al., 2010; Gardin et al., 2014; Lareau

et al., 2014), which alone would remove any correlation at the

A site. Second, CHX binding is reversible, and at concentrations

typically used in ribosome-profiling protocols, additional rounds

of elongation might occur between CHX-binding events. Third,

CHX prevents translocation of the ribosome by binding to the

E site, with space for a deacylated tRNA (Schneider-Poetsch

et al., 2010), and thus CHX binding affinity presumably varies

with features of the E site and the tRNA in it. Thus, in the pres-

ence of CHX pre-treatment, the ribosome density at a site is

likely more a function of the on and off rates of CHX binding

than a function of differential isoaccepting tRNA availability.

Indeed, recent analyses of profiling results obtained without

CHX pre-treatment have observed modest correlations between

tRNA abundances and ribosome-densities at the A site (Gardin

et al., 2014; Lareau et al., 2014).

When examining earlier ribosome-profiling datasets, we found

that whenever CHX pre-treatment was employed, the relation-

ship between ribosome occupancy and tRNA abundance was

both insignificant (p > 0.05) and in the opposite direction than ex-

pected (Figures S2C–S2E). Moreover, the concordance between

these CHX pre-treatment datasets indicated a systematic bias

(Figure S2), suggesting that an orthogonal set of mRNA

sequence biases influence CHX binding. In contrast, for every

dataset without CHX pre-treatment, we found that ribosome
ebruary 23, 2016 ª2016 The Authors 1789
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Figure 2. Codons Corresponding to Lower-Abundance tRNAs Are Decoded More Slowly

(A) Correlationbetweencodon-specific excess ribosomedensities andcognate tRNAabundances.CodonswithinRPFswere assigned to theA-, P-, andE-site positions

based on thedistance from the 50 ends of fragments, and codon-specific excess ribosomedensitieswere calculated (vk in EquationS19). Cognate tRNAabundances for

each codon were estimated using the genomic copy numbers of iso-accepting tRNAs and wobble parameters (Table S2). Spearman R values are shown, with their

significance (p values).

(B) The correlations of codon–tRNA abundance at different positions relative to the A site. Analysis was as in (A) using varying offsets from the A-site position within RPFs

(x axis) to calculate Spearman correlations (y axis).

See also Figures S2 and S3 and Tables S1 and S2.
densities were inversely correlated with tRNA abundances (Fig-

ures S2C–S2E).

In our dataset, we found that codon-specific excess

ribosome densities (vk in Equation S19) were strongly anti-

correlated with cognate tRNA abundances, as estimated

by copy numbers of tRNA genes and wobble parameters

(Figures 2A and 2B). This strong anti-correlation was also

observed with direct estimates of tRNA abundances obtained

from our RNA-seq measurements (Figure S2A; Table S1).

As expected, the correlation was specific to the codon

within the A site, with residual correlations at the P and E sites,

which were potentially caused by some 50 heterogeneity

of RPFs.

Taken together, these results strongly support the idea that

differential cognate tRNA abundances influence differential elon-

gation times of codons in the absence of CHX. Without CHX pre-

treatment, we also observedwidespread pausing after polybasic

tracts (Figure S3) but not at P-site proline codons (Figure S2),

which has been the subject of some debate (Supplemental

Information).

Slower Elongation at Regions Encoding Inter-domain
Linkers
The modulation of elongation rates by either tRNA abundances

(Figure 2A) or polybasic stretches (Figure S3) might influence

the kinetics of co-translational folding. Indeed, slower elongation

rates within inter-domain linkers relative to the adjacent domains

is reported to coordinate co-translational folding of nascent

polypeptides (Thanaraj and Argos, 1996; Kimchi-Sarfaty et al.,

2007; Pechmann and Frydman, 2013). However, systematic
1790 Cell Reports 14, 1787–1799, February 23, 2016 ª2016 The Auth
experimental evidence for such differences in elongation rates

has been lacking.

To examine whether our ribosome-profiling data reveal such

differences, we first used InterProScan classifications (Jones

et al., 2014) based on the Superfamily database (Wilson et al.,

2009) to partition coding sequences into domain and linker re-

gions. We then calculated the mean normalized RPF densities

(zij in Equation S7) for codons within the domain- and linker-en-

coding regions and found significantly lower densities in regions

of genes that fell within domains compared those that fell

outside of domains (Figure 3; mean difference 0.094, paired t

test, p < 10�26). To eliminate any influence of the 50 ramp, we

repeated the analysis excluding the first 200 codons. Although

the size of the effect diminished (mean diff = 0.029), the differ-

ence in mean ribosome densities remained significant (p =

0.0002), indicating that the 50 ramp was not solely responsible

for lower ribosome densities within domains (Figure S4A).

The trend toward relatively lower ribosome densities in domain

regions held even when restricted to each individual amino acid,

with the exceptions of cysteine residues and the single-codon-

encoded methionine and tryptophan residues (Figure S4).

Thus, differences in amino acid content between domains and

linkers could not account for the observed differences in bound

ribosome densities. Moreover, for 54 out of 61 sense codons, we

found significantly lower ribosome densities in domains

compared to linkers (one-sided t test, p < 0.05). For 26 out of

61 codons, we found significantly lower ribosome densities in

domains even after excluding the first 200 codons (one-sides

t test, p<0.05). This result implied that differences in synonymous

codon usage between domain and linker regions cannot alone
ors



Figure 3. Elongation Dynamics Correlate Domain Architecture

Cumulative distributions of normalized ribosome densities within and outside

of protein-folding domains. Mean normalized RPF densities (zij in Equation S7)

for codons within the domain-encoding and non-domain-encoding regions

were individually calculated for each ORF. Domain assignments were based

on InterProScan classifications (Jones et al., 2014) obtained from the Super-

family database (Wilson et al., 2009). Statistical significance was evaluated

using paired t test (p < 10�26).

See also Figure S4.
account for the differences in ribosome densities. One possible

mechanism for differential ribosome occupancy, independent

of codon usage, is differential recruitment of chaperones and

their associated effects on co-translational folding (Ingolia, 2014).

Similar results for densities in domain and linker regions were

obtained when using InterProScan classifications (Bateman

et al., 2002) instead of the Superfamily database (Figure S4B).

Finally, consistent with other computational analyses (Pech-

mann and Frydman, 2013), differences in elongation rate were

found at the level of protein secondary structures aswell: regions

corresponding to helices and sheets exhibited significantly lower

RPF densities than regions corresponding to loops (Figure S4C).

Taken together, these results provided systematic empirical

support for the claim that co-translational folding requirements

influence elongation rates. Nonetheless, the magnitude of this

signal was very small, suggesting that slower inter-domain elon-

gation either has very little impact or impacts very few genes.

Estimates of Protein-Synthesis Rates
Our results thus far indicated that the ribosome density at a given

codon position is influenced by the abundance of cognate tRNAs

and whether the codon is immediately downstream of a polyba-

sic stretch, falls within a protein domain, or lies in the 50 region of

the ORF. The non-uniform ribosome densities along individual

ORFs imply that the overall RPF density on each gene (i.e.,

RPKM of RPFs) does not directly reflect the rate of protein syn-

thesis (Li et al., 2014). For example, the RPF densities of genes

enriched in more slowly elongated codons would tend to overes-

timate their protein-synthesis rates, and the same would be true

for shorter ORFs. To more accurately quantify the protein-syn-
Cell R
thesis rates of individual genes from RPF densities, we used

empirically derived correction factors to account for the position-

and codon-specific effects we observed (fj in Equation S23).

With these correction factors, the �74.3 million sequenced

RPFs enabled reliable estimates of protein-synthesis rates for

4,839 genes (Equation S28).

Accurate Measurement of Yeast mRNA Abundances
In addition to improving measurements of ribosome densities,

we sought to improve measurements of mRNA abundances,

which is also critical for accurately quantifying translational

control. Prior experiments have typically measured yeast

mRNA abundances by performing RNA-seq on poly(A)-se-

lected RNA (Ingolia et al., 2009; Gerashchenko et al., 2012;

Zinshteyn and Gilbert, 2013; Artieri and Fraser, 2014; Guydosh

and Green, 2014; McManus et al., 2014). However, poly(A) se-

lection might bias mRNA-abundance measurements. For

example, mRNAs that lack a poly(A) tail of sufficient length to

stably hybridize to oligo(dT) might not be as efficiently recov-

ered. Although S. cerevisiae is not known to contain translated

mRNAs that altogether lack a poly(A) tail, the lengths of poly(A)

tails found on S. cerevisiae mRNAs are relatively short, with a

median length of 27 nt (Subtelny et al., 2014). Another source

of potential bias in poly(A) selection is partial recovery of

mRNAs endonucleolytically cleaved during RNA isolation or

poly(A) selection. The 50 fragments resulting from mRNA cleav-

age are not recovered by poly(A) selection, which causes a 30

bias in the resulting RNA-seq data (Nagalakshmi et al., 2008).

Indeed, analyses of published RNA-seq datasets from ribo-

some-profiling studies revealed a severe 30 bias in poly(A)-

selected RNA-seq reads, ranging from 19%–130% excess

reads (Equation S15) (Figure S5). Because longer mRNAs

have a higher probability of being cleaved, the abundances of

longer mRNAs might be systematically underestimated by

poly(A) selection (Table S3).

An alternative to poly(A) selection is rRNA depletion, which en-

riches mRNAs by removing rRNA using subtractive hybridiza-

tion. A concern with subtractive hybridization is the potential

depletion ofmRNAs that either cross-hybridize to the oligonucle-

otides used to remove rRNA sequences or adhere to the solid

matrix to which the oligonucleotides are attached. To investigate

the extent to which unintended mRNA depletion occurs when

using reagents sold for yeast RNA-seq library preparations, we

subjected the same total RNA to each of three procedures:

Dynabeads oligo(dT)25 (Life Technologies), RiboMinus Yeast

Transcriptome Isolation Kit (Life Technologies), or Ribo-Zero

Yeast Magnetic Gold Kit (Epicenter). As a reference, we also

generated an RNA-seq library from the total RNA that was not

enriched for mRNA and thus contained primarily rRNA (90.2%

of 199.7 million genome-mapping reads). We also note that we

started with RNA extracted from the lysate that was used for

ribosome-footprint profiling, as opposed to RNA extracted

from whole cells as done in the original ribosome-profiling study

(Ingolia et al., 2009). When comparing the 4,540 mRNAs for

which we obtained at least 64 reads in our total RNA library,

only the Ribo-Zero-treated sample faithfully recapitulated the

mRNA abundances observed in total RNA (R2 = 0.98; Figures

4A and S5). The poly(A)-selected and RiboMinus-treated
eports 14, 1787–1799, February 23, 2016 ª2016 The Authors 1791
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Figure 4. mRNA Enrichment Methods Can Bias mRNA Abundance Measurements

(A) mRNA abundances measured by RNA-seq of Ribo-Zero-treated RNA compared to those measured by RNA-seq of total unselected RNA. Pearson R2 is

indicated.

(B) Metagene analysis of RNA-seq read density in total unselected or mRNA-enriched RNA samples. Coding sequences were aligned by their stop codons, and

RNA-seq reads were individually normalized by the mean reads within the ORF and then averaged with equal weight for each codon position across all ORFs

(h0 0 j in Equation S15).

(C) mRNA abundances for mRNA-enriched samples relative to total unselected RNA, as a function of ORF length.

See also Figures S5, S6, and S7 and Tables S3 and S4.
samples each had significantly lower correlations with total RNA

(R2 = 0.85 and R2 = 0.87, respectively), indicating a skewed

representation of the transcriptome. Compared to RNA-seq

data from published ribosome-profiling studies, our Ribo-Zero-

treated sample also exhibited the highest correlations with mi-

croarray-based estimates of mRNA abundances (Table S3).

As anticipated, the poly(A)-selected sample contained a

strong 30 bias (Figure 4B), which caused a systematic underesti-

mation of the abundances of longer genes (Figure 4C). After ac-

counting for this strong bias in the poly(A)-selected sample, we

did not detect a relationship between poly(A)-tail length and

poly(A)-selection efficiency, suggesting that tail-length differ-

ences did not significantly contribute to the biases of poly(A)-

selected RNA-seq data. For the RiboMinus-treated sample,

cross-hybridization to the depletion probes might have skewed

the mRNA abundances, which might have been largely avoided

in the Ribo-Zero protocol because of its more stringent hybridi-

zation conditions. The RiboMinus-treated sample also had

substantial rRNA contamination (44.5% of reads, originating pri-

marily from the 5S rRNA).

Interestingly, the total-RNA and the Ribo-Zero datasets both

contained a small 30 bias (Figure 4B), with median 30/50 excess
reads of 22% and 28%, respectively (Table S4). This bias was

consistent with reports that yeast mRNAs are primarily degraded

in the 50-to-30 direction (Hu et al., 2009; Pelechano et al., 2015).

The decay intermediates of this vectorial degradation process

would contribute more reads toward the 30 ends of mRNAs, giv-

ing rise to the observed bias, especially when considering that

our RNA samples were enriched for cytoplasmic RNA, which

would diminish the countervailing vectorial mRNA synthesis pro-

cess occurring in the nucleus. Nonetheless, the 30 biases in the

total-RNA and Ribo-Zero datasets were smaller than those in

poly(A)-selected samples, for which median 30/50 excess
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mRNA reads ranged from 42% to 275% (Table S4). Because

Ribo-Zero treatment enabled deep coverage of the yeast tran-

scriptome without substantially biasing mRNA abundances, we

used mRNA abundances estimated from Ribo-Zero-treated

RNA for all subsequent analyses.

A Narrow Range of Initiation Efficiencies in Log-Phase
Yeast
Because protein synthesis is typically limited by the rate of trans-

lation initiation (Andersson and Kurland, 1990; Bulmer, 1991;

Shah et al., 2013), we defined the initiation efficiency (IE) of

each gene as its protein-synthesis rate divided by its mRNA

abundance (Equation S27). Thus, the IE measure quantified the

efficiency of protein production per mRNA molecule of a gene,

in a typical cell. To facilitate comparisons with published data-

sets, we also calculated the translational efficiency (TE) of each

gene, defined as its RPF density normalized by its mRNA abun-

dance (Ingolia et al., 2009). Because TE is calculated based on

the RPF density rather than the protein-synthesis rate, TE does

not account for differential rates of elongation associated with

the 50 ramp or codon identity. Nonetheless, IE and TEwere highly

correlated (R = 0.951; Figure S6A).

A wide range of IEs (or TEs) among genes would indicate that

protein production is under strong translational control, whereas

a narrow range would indicate that protein production is typically

governed by mRNA abundances, and hence protein-synthesis

rate is primarily controlled by mRNA transcription and decay.

The first ribosome-profiling study suggested a large amount of

translational control in yeast, with the range of TEs reported to

span roughly 100-fold (Ingolia et al., 2009). Indeed, we found

that the 1–99 percentile range of TEs in those data spanned

73-fold (Figure S6C). In contrast, the range of TEs observed in

our data was narrower, with the 1–99 percentile spanning only
ors
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Figure 5. TEs and IEs Span a Narrow Range in Log-Phase Yeast Cells

(A) Distribution of TE measurements, with vertical dashed lines marking the first and 99th percentiles, and the fold change separating these percentiles indicated.

All ORFs with at least 128 total reads between the ribosome-profiling and RNA-seq datasets were included (except YCR024C-B, which was excluded because it

is likely the 30 UTR of PMP1 rather than an independently transcribed gene).

(B) Relationship between estimated protein-synthesis rate and mRNA abundance for genes shown in (A). GCN4 and HAC1 (red points) were the only abundant

mRNAs with exceptionally low protein-synthesis rates. The best linear least-squares fit to the data is shown (solid line), with the Pearson R. For reference, a one-

to-one relationship between protein-synthesis rate and mRNA abundance is also shown (dashed line).

(C) Relationship between experimentally measured protein abundance (de Godoy et al., 2008) and either protein-synthesis rate (left) or mRNA abundance (right).

The 3,845 genes from (A) for which protein-abundance measurements were available were included in these analyses. Pearson correlations are shown (R).

(D) Relationship between mRNA abundance and IE for genes shown in (A). The best linear least-squares fit to the data is shown, with the Pearson R.

See also Figures S8 and S9 and Table S5.
a 15-fold range (Figure 5A). Although the range of IEs was

marginally wider than that of TEs (1–99 percentile spanning 21-

fold; Figure S6B), it was still substantially smaller than the range

of TEs initially reported (Ingolia et al., 2009). The relatively narrow

range of IEs in our data was also reflected by the high correlation

between mRNA abundance and protein-synthesis rate (R =

0.948; Figure 5B), supporting the conclusion that protein-synthe-

sis rates are largely dictated bymRNA abundances (Csárdi et al.,

2015). Interestingly, the slope of the regression between mRNA
Cell R
and protein-synthesis rates was >1 on the log-scale, indicating

that translation regulation mostly amplifies the effect of differen-

tial mRNA abundances rather than buffering it (Csárdi et al.,

2015). Further indicating that mRNA abundance (when accu-

rately measured) is a strong predictor of total protein production,

mass-spectrometry-based measurements of steady-state pro-

tein abundance (de Godoy et al., 2008) correlated as well with

mRNA abundances as they did with protein-synthesis rates

(Figure 5C).
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Figure 6. mRNA Sequence, Structure, and Length Correlate with IE
(A) Reduced IE values for genes with at least one upstream AUG (i.e., an AUG codon located within the annotated 50 UTR). The plots indicated the median (line),

quartile (box) and first and 99th percentiles (whiskers) of the distributions.

(B) Inverse relationship between IE and the folding energy of predicted RNA secondary structure near the cap (Cap-folding energy). RNAfold was used to estimate

folding energies for the first 70 nt of the mRNA. Gray bars indicate 1 SD of IE values for genes binned by predicted folding energy. The best linear least-squares fit

to the data is shown (solid line), with the Pearson R.

(C) Inverse relationship between IE and ORF length. The best linear least-squares fit to the data is shown (solid line), with the Pearson R.

See also Figure S7.
When we examined the range of TEs in other published data-

sets, we also found more narrow ranges (as low as 11-fold from

1–99 percentiles) than that of Ingolia et al. (2009) (Figure S6C).

However, the TEs in published datasets—which are all gener-

ated using poly(A)-selected mRNA—were not particularly well

correlated with each other (Table S5). These discrepancies in

TEs were largely due to differences in measured mRNA abun-

dances, whereas the RPF abundances correlated almost

perfectly (Table S5). Collectively, these results indicate that the

amount of translational control in log-phase yeast has been over-

estimated due to inaccuracies in TE measurements, largely

caused by challenges in accurately measuring mRNA levels.

We also noticed that the shape of the TE distribution from our

data, which was asymmetric, differed from that of the Ingolia

data, which is highly symmetric. In particular, in our data there

were relatively few genes in the right tail of the distribution (Fig-

ure 5A; note the location of the mode closer to the 99th than

the first percentile). This observation implied that mRNAs from

very few genes contain elements that impart an exceptionally

high initiation efficiency and are thereby ‘‘translationally privi-

leged.’’ Rather, most mRNAs either initiate close to a maximum

possible rate (likely set by the availability of free ribosomes or

initiation factors) or contain features that modestly reduce the

initiation rate.

To the extent that differences in IE were observed, the genes

with lower IE tended to be expressed at lower mRNA levels,

with IE increasing roughly linearly with mRNA expression levels

(Figure 5D). These results were consistent with the notion that

abundant mRNAs have undergone evolutionary selection to be

efficiently translated (Sharp and Li, 1987; Andersson and Kur-

land, 1990; Plotkin and Kudla, 2011; Shah and Gilchrist, 2011).

Interestingly, in the plots comparing protein-synthesis rate or

IE with mRNA level, the points for 11 of the 12 highest expressed

mRNAs fell below the regression lines (Figures 5B and 5D,
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dashed lines), suggesting that the efficiency for the highest

expressed mRNAs might have saturated.

Two notable outliers appeared in the comparison of mRNA

abundances and synthesis rates (Figure 5B, red dots). These

two, which corresponded to relatively abundant mRNAs with

exceptionally low synthesis rates, were HAC1 and GCN4. These

are the two most well-known examples of translational control in

log-phase yeast and are both involved in rapid stress responses,

during which translational repression is relieved (R€uegsegger

et al., 2001; Mueller and Hinnebusch, 1986; Dever et al., 1992).

The observation that HAC1 and GCN4 were the only abundant

mRNAs that were strongly regulated at the translational level

further emphasized that translational control only modestly influ-

ences the protein production of most yeast genes. Nevertheless,

the tuning of synthesis rates via translational control can help

maintain the proportional synthesis of the subunits of multipro-

tein complexes (Figures S6D–S6G; Supplemental Experimental

Procedures).

Determinants of Initiation Efficiencies in Yeast
Next, we sought to identify sequence-based features that

explain the variation in IE values that remained among genes af-

ter improving the RPF and mRNA measurements. First, we

considered uORFS, which can inhibit translation by serving as

decoys to prevent initiation at the start codons of bona fide

ORFs (Zur and Tuller, 2013), as occurs for GCN4 (Mueller and

Hinnebusch, 1986; Dever et al., 1992), one of two genes with

the greatest translational repression (Figure 5B). Using high-res-

olution 50 UTR annotations (Arribere and Gilbert, 2013), we iden-

tified upstream AUGs (uAUGs) in 303 out of the 2,549 genes that

had reproducibly uniform transcription-start sites. Those genes

containing uAUGs had significantly lower IEs than genes without

uAUGs, even after controlling for 50 UTR lengths (Figure 6A; t test

p < 10�16). These results confirmed that a general feature of
ors
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Yeast IEs

Correspondence between predicted IEs and IEs inferred directly from the RPF

and RNA-seq data. Initiation efficiencies were predicted using a multiple-

regressionmodel, basedonmRNAabundanceandsequence-based featuresof

the 2,549 genes with empirically determined 50 UTRs. Shown is the Pearson R.

See also Table S6.
uORFs is to decrease the translation of downstream ORFs, and

that the presence of uAUGs can explain some of the variance in

IEs (Arribere and Gilbert, 2013; Zur and Tuller, 2013).

Another feature that has been linked to differences in synthesis

rates is mRNA secondary structure. Structure located near the

50 capmight interfere with binding of the eIF4F cap-binding com-

plex, while structure within the 50 UTR could disrupt the scanning

40S ribosome. An open structure around the start codon might

also be important for facilitating joining of the 60S subunit. Pre-

vious genome-wide structure analyses revealed a weak but

significant inverse correlation between start-codon-proximal

structure and TE (Kertesz et al., 2010), but the accessibility of

the 50 UTR more generally was not reported, and the TE values

used in those studies were affected by RNA-seq biases. For

each mRNA with a single reproducible 50 end (Arribere and

Gilbert, 2013), we predicted the accessibility of the 50 cap by

calculating the predicted folding energy of the sequence span-

ning increasing distances from the cap. For all distances exam-

ined, we observed a significant correlation between predicted

cap accessibility and IE (t test, p < 10�6 for each window; Figures

6B and S7). This correlation rapidly increased with window

length, approaching a maximum at 70–90 nt (Pearson correla-

tion, R �0.37 for windows 70–90 nt) and then steadily declined

for larger windows (Figure S7), consistent with local folding of

the 50 end determining cap accessibility. Together, these results

confirmed that mRNAs with less-structured 50 UTRs tend to be

initiated more efficiently (Godefroy-Colburn et al., 1985; Shah

et al., 2013), which is consistent with eIF4F binding, 40S recruit-
Cell R
ment, or scanning as influential regulatory steps during eukary-

otic initiation. Notably, the correlations that we observed

between predicted mRNA structure and translation were the

largest that have been reported between these features in eu-

karyotes, which emphasized the utility of our accurate IE mea-

surements and of predicting structure near the cap as opposed

to more downstream regions.

Gene length has also been reported to correlate with transla-

tional efficiency. Although global polysome-profiling studies indi-

cate strong anti-correlation between ORF length and ribosome

density (Arava et al., 2003), analysis of published ribosome-foot-

print-profiling data revealed essentially no correlation (or even a

positive correlation in some cases) between length and TE (Fig-

ure S7). In contrast, we observed a striking negative correlation

in our IE (and correspondingly in our TE) data (Figures 6C and

S7). Our IE measure already corrected for the elevated ribosome

densities in the first 200 codons, and the negative correlation be-

tween ORF length and TE persisted even after removing the first

250 codons of eachORF, which further confirmed that this corre-

lationwasnot causedby the 50 ramp (FigureS7). Thediscrepancy

between our data and earlier ribosome-profiling datasets was

likely due to the RNA-seq 30-bias caused by poly(A) selection

(Figures 4B and S5). Indeed, an anti-correlation between ORF

length and TE was observed in most other datasets when we

controlled for the 30 bias by estimatingmRNA abundances based

on mapped RNA-seq reads from only the 30 ends of genes (Fig-

ure S7). Together, these results showed that the original report

of shorter mRNAs having relatively higher initiation efficiencies

(Arava et al., 2003) is correct, even after accounting for the

CHX-enhanced 50 ramp that confounded that analysis.

A Statistical Model that Predicts Initiation Efficiencies
Based on these results, we used multiple linear regression to

build a model that considered number of uAUGs, predicted

cap-proximal RNA-folding energy (and also GC content of the

50 UTR as another metric for structure), and lengths of the ORF

and the 50 UTR to explain the variance in IE observed among

genes.We also included anmRNA-abundance term in themodel

because IE is greater for more abundant mRNAs (Figure 5D). To

identify themost informative features, we used Akaike’s Informa-

tion Criteria (AIC) for model selection and both step-up and step-

downmodel-selection procedures (using the stepAIC function in

theMASS package in R). Themultiple regressionmodel that best

explained the variation in IE included all six variables, even after

penalizing for model complexity (Figure 7; Table S6). The domi-

nant explanatory variable was mRNA abundance, which alone

accounted for �40% of the variance in IE. Collectively, a model

containing all six variables explained�58% of the variance in IE.

A model that excluded mRNA abundance, and therefore de-

pended on only sequence-based features, still explained

�39% of the variance in IE. These results of our statistical

modeling should help motivate mechanistic studies of how

each of these mRNA features impacts translation.

DISCUSSION

We have shown that improved measurements of both mRNA

abundances and RPFs can provide insights into the regulation
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and dynamics of eukaryotic translation. The RPFs that we iso-

lated and sequenced are indicative of a dynamic and heteroge-

neous elongation process, with ribosomes transiting along

mRNA molecules at variable rates depending on the distance

from the start codon, codon identity, and nascent polypeptide

sequence.

What might explain the 50 ramp of ribosomes observed even in

the absence of CHX pre-treatment (Figure 1C)? Codon usage

accounted for about a third of it, but even the same codons

were differentially occupied by ribosomes depending upon

whether they occurred in the 50 or 30 ends of genes (Figure 1D),

indicating that additional mechanisms must be involved.

Although we cannot rule out ribosome drop-off as a contributing

factor, we favor the idea that elongation is slower during the early

phase of translation. Perhaps an initiation factor remains

engaged with the 80S ribosome during early elongation, and

the bound factor maintains the ribosome in a slower state until

it stochastically dissociates from the ribosome within the first

200 codons. The eIF3 complex is a promising candidate for

such a factor, as it binds the solvent-exposed face of the 40S

ribosome (Siridechadilok et al., 2005) and can therefore bind to

80S ribosomes as well (Beznosková et al., 2013). Maintaining

eIF3 on early elongating ribosomes might also facilitate re-initia-

tion after translation of short uORFs (Szamecz et al., 2008; Zur

and Tuller, 2013).

A practical finding of our studies is that the choice of mRNA

enrichment method can have a significant impact on yeast

mRNA-abundance measurements. rRNA depletion using the

Ribo-Zero kit was the only method that enriched for mRNAs

without introducing substantial and systematic biases (Figures

4A and S5). One caveat of rRNA depletion is that nascent pre-

mRNAs that lack a poly(A) tail may also be recovered, which

can inflate mRNA abundance measurements with respect to

the pool of translatable mRNA molecules. This effect may be

more pronounced in metazoans that contain long introns and

correspondingly long transcription times. The extent to which

poly(A)-selection biases affect metazoan mRNA abundance

data and thereby influence TE measurements remains to be

determined.

The initial report that TE spans a roughly 100-fold range across

mRNAs in budding yeast spurred intensive investigation of the

underlying TE determinants, with varying degree of success

(Kertesz et al., 2010; Tuller et al., 2011; Charneski and Hurst,

2013; Zur and Tuller, 2013; Bentele et al., 2013; Rouskin et al.,

2014). Our results showed that this apparently wide range of

TEs is partly explained by inaccurate mRNA-abundance mea-

surements. After identifying and minimizing this source of inac-

curacy, we observed a narrower range of TEs and IEs (Figure 5A;

Table S3), suggesting a more limited degree of translational con-

trol. The TE range that we observed in yeast resembled the range

observed in mouse embryonic stem cells (Ingolia et al., 2011),

suggesting that limited translational control is a general principle

of gene regulation in rapidly dividing eukaryotic cells.

Using our IEmeasurements, wewere able to generate a statis-

tical model that explained a majority of the IE variance (Figure 7;

Table S6). Based on this model, secondary structure within the

50 UTR, most especially cap-proximal structure, appears to be

an important determinant of IE. These results are in agreement
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with early mechanistic studies demonstrating that cap accessi-

bility correlates with initiation efficiency (Godefroy-Colburn

et al., 1985) and that stable 50 UTR secondary structures block

the scanning ribosome (Kozak, 1986). One caveat of our

structure analyses is that we used in silico prediction of mRNA

structure, which does not always accurately capture the in vivo

structure of mRNA (Rouskin et al., 2014). Further indicating the

inadequacy of in silico predictions was the benefit of also

including 50 UTR GC content as a feature in our model. Likewise,

the inclusion of mRNA abundance might have helped compen-

sate for the inadequacy of in silico structure predictions, as hi-

ghly expressed genes have less predicted structure in 50 UTRs
than do lowly expressed genes (Gu et al., 2010), and presumably

these differences would be even greater when looking at actual

50 UTR structure. Therefore, mRNA structure presumably ex-

plains even more variation in IE than our analyses suggested.

We also found that longer ORFs tended to be more poorly

translated in log-phase yeast, even after accounting for the 50

ramp (Figure 6C). Given that initiation occurs at the 50 ends of

mRNAs, how might initiation rates be sensitive to ORF lengths?

One possibility is that shorter mRNAs, which include ribosomal

proteins and other housekeeping genes (Hurowitz and Brown,

2003), might be under selection for faster initiation rates by virtue

of their high expression. However, our stepwise regression

showed that ORF length was informative even after accounting

for mRNA abundance. Another possibility is that the 50-UTR-
bound initiation machinery can sense and be affected by ORF

length via the closed-loop structure. In eukaryotes, translating

mRNAs are thought to adopt a pseudo-circularized structure

in which the 50 and 30 ends are in close proximity, enhancing

translation and mRNA stability (Christensen et al., 1987). Previ-

ous biochemical analysis of the closed loop in yeast extracts

revealed that only short mRNAs adopt a stable closed-loop

structure in vitro (Amrani et al., 2008), presumably due to the

relatively short distance between the mRNA termini. If the

same principle applies in vivo, then inefficient closed-loop for-

mation of long mRNAs could explain their relatively low IEs.
EXPERIMENTAL PROCEDURES

Yeast Culture, Harvesting, and Lysate Preparation

S. cerevisiae strain BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0) was

grown at 30�C in 500 ml YPD to OD600 0.5. Cells were harvested by filtration

using a Kontes Ultra-Ware Microfiltration Assembly with a Supor 450 Mem-

brane Disc Filter that had been pre-wet with YPD. As the last liquid flowed

through, the filtration apparatus was rapidly disassembled, cells were gently

scraped off of the filter using a cell lifter, and the scraper was immediately

submerged in a 50-ml conical tube filled with liquid nitrogen. Once the liquid

nitrogen had boiled off, the pellet was stored in the conical tube at –80�C until

lysis. To lyse cells under cryogenic conditions, the cell pellet was transferred

into a pre-chilled mortar that was surrounded and filled with liquid nitrogen.

The pellet was ground to a fine powder with a pre-chilled pestle, transferred

into a 50-ml conical tube filled with liquid nitrogen, and after boiling off the

liquid stored at –80�C. Crude lysate was prepared by briefly thawing the cell

powder on ice for 1 min and then resuspending in 4 ml polysome lysis buffer

(10 mM Tris-HCl [pH 7.4], 5 mM MgCl2, 100 mM KCl, 1% Triton X-100,

2 mM DTT, 100 mg/ml cycloheximide, 500 U/ml RNasin Plus RNase Inhibitor

[Promega], cOmplete EDTA-free Protease Inhibitor Cocktail [Roche]). The

lysate was centrifuged at 1,300 3 g for 10 min, and the supernatant was flash

frozen in single-use aliquots.
ors



RNA-Seq

Total RNA was extracted from an aliquot of frozen yeast lysate using TRI Re-

agent (Ambion) according to themanufacturer’s protocol. Aliquots of the same

sample were subjected to either no enrichment (the total RNA sample), poly(A)

selection using 30 mg total RNA and 100 ml Dynabeads oligo(dT)25 (Life Tech-

nologies) according to the manufacturer’s instructions, rRNA depletion using

4 mg total RNA and the RiboMinus Yeast Transcriptome Isolation Kit (Life Tech-

nologies) according to themanufacturer’s instructions, and rRNA depletion us-

ing 10 mg total RNA and the Ribo-Zero Gold Yeast rRNA Removal Kit (Illumina)

according to the manufacturer’s instructions. RNA samples were then diluted

to 90 ml with water and precipitated with 10 ml 3 M NaCl, 30 mg GlycoBlue (Life

Technologies), and 250 ml ethanol. RNA-seq was performed as described

(Subtelny et al., 2014), using five cycles of PCR.

Ribosome Profiling

RPFs were isolated from an aliquot of frozen yeast lysate and sequenced on

the Illumina HiSeq platform, as described (Subtelny et al., 2014). Detailed pro-

tocols for RNA-seq and ribosome profiling are available at http://bartellab.wi.

mit.edu/protocols.html. RNase I treatment was performed using 0.2 U/ml

lysate. Subtractive hybridization to remove contaminating rRNA fragments

was performed using a mixture of three biotinylated oligonucleotides (Inte-

grated DNA Technologies): 50-GATCGGTCGATTGTGCACCTC/3Bio/; 50-CGC

TTCATTGAATAAGTAAAG/3Bio/; 50-GACGCCTTATTCGTATCCATC/3Bio/.

Analyses

Equations and detailed procedures for analyses are provided in Supplemental

Experimental Procedures.
ACCESSION NUMBERS

Sequencing data have been deposited in the GEO database under accession

number GEO: GSE75897.
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