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SUMMARY

Deep sequencing now provides detailed snapshots
of ribosome occupancy on mRNAs. We leverage
these data to parameterize a computational model
of translation, keeping track of every ribosome,
tRNA, and mRNA molecule in a yeast cell. We deter-
mine the parameter regimes in which fast initiation or
high codon bias in a transgene increases protein
yield and infer the initiation rates of endogenous
Saccharomyces cerevisiae genes, which vary by
several orders of magnitude and correlate with 50

mRNA folding energies. Our model recapitulates
the previously reported 50-to-30 ramp of decreasing
ribosome densities, although our analysis shows
that this ramp is caused by rapid initiation of short
genes rather than slow codons at the start of tran-
scripts. We conclude that protein production in
healthy yeast cells is typically limited by the availabil-
ity of free ribosomes, whereas protein production
under periods of stress can sometimes be rescued
by reducing initiation or elongation rates.

INTRODUCTION

Protein translation is central to cellular life. Although individual
steps in translation such as the formation of the 43S preinitiation
complex are known in intricate molecular detail, a global under-
standing of how these steps combine to set the pace of protein
production for individual genes remains elusive (Jackson et al.,
2010; Plotkin and Kudla, 2011). Factors such as biased codon
usage, gene length, transcript abundance, and initiation rate
are all known to modulate protein synthesis (Bulmer, 1991; Cha-
mary et al., 2006; Cannarozzi et al., 2010; Tuller et al., 2010a;
Shah and Gilchrist, 2011; Plotkin and Kudla, 2011; Gingold and
Pilpel, 2011; Chu et al., 2011; Chu and von der Haar, 2012),
but how they interact with one another to collectively determine
translation rates of all transcripts in a cell is poorly understood.
Systematic measurements for some of the most critical rates—
such as the gene-specific rates of 50 UTR scanning and start
codon recognition—are extremely difficult to perform. As a

result, questions as fundamental as the relative role of initiation
versus elongation in setting the pace of protein production are
still actively debated (Kudla et al., 2009; Tuller et al., 2010a; Plot-
kin and Kudla, 2011; Gingold and Pilpel, 2011; Chu et al., 2011;
Chu and von der Haar, 2012; Ding et al., 2012). Biotechnical
applications that exploit these processes stand to gain from a
quantitative understanding of the global principles governing
protein production (Gustafsson et al., 2004; Salis et al., 2009;
Welch et al., 2009).
Recent advances in synthetic biology allow high-throughput

studies on the determinants of protein production (Kudla et al.,
2009; Welch et al., 2009; Salis et al., 2009). Sequencing tech-
niques such as ribosomal profiling provide snapshots of the
translational machinery in a cell (Ingolia et al., 2009; Reid and
Nicchitta, 2012). One way to leverage this new information is to
develop a computationally tractable model of translation in a
cell, to parameterize it from known measurements, and to use it
to infer any unknown parameters of global translation dynamics.
Here, we develop a whole-cell model of protein translation,

andwe apply it to study translation dynamics in yeast. Ourmodel
describes translation dynamics to the single-nucleotide resolu-
tion for the entire transcriptome. In combination with ribosomal
profiling data, we use our model to infer the initiation rates of
all abundant yeast transcripts. We systematically explore how
the codon usage, transcript abundance, and initiation rate of a
transgene jointly determine protein yield and cellular growth
rate. Applied to the endogenous genome, our model reproduces
one of the defining features of ribosomal profiling measure-
ments: a decrease in ribosome density with codon position.
We evaluate both elongation- and initiation-driven hypotheses
for the ramp of 50 ribosome densities. We also describe the fac-
tors that influence ribosomal pausing alongmRNAmolecules, as
well as the effects of stress on translation.

RESULTS

Model
We developed a continuous-time, discrete-state Markov model
of translation. The model tracks all ribosomes and transfer
RNA (tRNA) molecules in a cell—each of which is either freely
diffusing or bound to a specific messenger RNA (mRNA) mole-
cule at a specific codon position at any time point (Extended
Experimental Procedures). Rates of initiation and elongation
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are based on physical parameters that have been experimentally
determined in yeast, including the cell volume, the abundances
of ribosomes and tRNAs, and their diffusion constants (Tables 1
and S1 available online). Transition rates among states are
parameterized in seconds so that the model describes the
dynamics of translation in real time, as opposed to using arbi-
trary discrete time steps. We provide a precise definition of the
Markov state space, as well as pseudocode and complete
source code in Data S1 and S2 and also Table S2.

Unlikemany other models of translation (Gilchrist andWagner,
2006; Mitarai et al., 2008; Reuveni et al., 2011), which treat each
mRNAmolecule in isolation and assume an inexhaustible supply
of free ribosomes that initiate themessage at a constant rate, our
model keeps track of every tRNA, mRNA, and ribosome mole-
cule in the cell simultaneously, and so it captures the indirect
effects of one gene’s translation on another’s (Figure 1). In partic-
ular, if many ribosomes are engaged in translating the mRNAs of
one gene, this reduces the pool of free ribosomes and tRNAs
available to translate other genes.

Our model makes a number of simplifying assumptions. Most
importantly, our model treats the total number of ribosomes,
tRNA molecules, and mRNA molecules in the cell as fixed quan-
tities because the dynamics of their production and decay are
typically slower than those of protein translation (Garcı́a-Martı́-
nez et al., 2004; Larson et al., 2011). We specify the total number
of ribosomes and tRNAmolecules to agree with their experimen-
tally determined values in an exponential-phase yeast cell: 2 3
105 and 3.3 3 106, respectively (Waldron and Lacroute, 1975;
Warner, 1999; von der Haar, 2008; Siwiak and Zielenkiewicz,
2010; Chu and von der Haar, 2012). We infer gene-specific initi-
ation probabilities (Extended Experimental Procedures) so that
85% of ribosomes are bound to mRNAs in equilibrium in agree-
ment with measurements in yeast (Arava et al., 2003; Zenklusen
et al., 2008). We further assume that tRNA charging is fast, which
is reasonable because 80%of all tRNAs are charged at any given
time in exponential-phase cells (Varshney et al., 1991; Jakubow-
ski and Goldman, 1992; Chu et al., 2011).

As a result of these parameters, the equilibrium number of
free ribosomes available in the cell is typically smaller than
the number of available charged tRNAs of each species. In
this regime, we will show that protein production is generally
limited by the rate of translation initiation in the sense that
increasing the initiation probability of an mRNA molecule will
typically increase the rate at which protein is produced, but
increasing its codon elongation rates generally will not increase
production. The initiation-limited regime agrees with the long-
standing view of endogenous protein synthesis (Andersson
and Kurland, 1990; Bulmer, 1991; Eyre-Walker and Bulmer,
1993; Lackner et al., 2007; Plotkin and Kudla, 2011), but it
contrasts with other models of translation that assume an inex-
haustible supply of ribosomes, which are always available for
initiation of an mRNA regardless of how many ribosomes are
bound to other mRNAs (Mitarai et al., 2008; Reuveni et al.,
2011; Tuller et al., 2011).
We implemented our Markov model of translation using the

Gillespie algorithm. We simulated 1,500 s of translation and
extracted the final 500 s to collect data on translation dynamics
in equilibrium (Experimental Procedures). Our implementation
requires about 1,300 s of computation time to simulate all initia-
tion and elongation events in a wild-type cell for 1,500 s. In these
simulations, at equilibrium, the mean elongation rate is 9.3 aa/s
(median = 9.5 aa/s), and the mean distance between consecu-
tive bound ribosomes is 60 codons (median = 34). Both of these
quantities agree with empirical measurements in yeast (Arava
et al., 2003).

Codon Bias and Transgene Expression
Optimizing a transgene’s codon usage to the tRNA content of a
cell often improves protein yield (Gustafsson et al., 2004; Welch
et al., 2009), but the underlying mechanisms have not been
systematically explored. To study this in a quantitative model,
we simulated translation of a transgene within the context of a
Saccharomyces cerevisiae cell containing 3,795 endogenous
genes whose transcript levels and gene-specific initiation

Table 1. Summary of Model Parameters

Parameter Description Value or Range of Values References

Rt number of ribosomes 2 3 105 (Warner, 1999; von der Haar, 2008)

At number of mRNAs 6 3 104 (Zenklusen et al., 2008)

Tt number of tRNAs 3.3 3 106 (Waldron and Lacroute, 1975)

Tn number of types of tRNAs 41 (Chan and Lowe, 2009)

Ttj number of tRNAs of type j !12,000–190,000 (Chan and Lowe, 2009)

Ai number of mRNAs of type i 1–1,254 (Ingolia et al., 2009)

pi gene-specific initiation probability !3.5 3 10"6–0.115 (Experimental Procedures)

n number of genes 3,795 (Ingolia et al., 2009)

Dr diffusion coefficient of ribosomes 3 3 10"13 m2/s (Politz et al., 2003)

Dt diffusion coefficient of tRNAs 8.42 3 10"11 m2/s (Werner, 2011)

Cr size of ribosome footprint in codons 10 (Ingolia et al., 2009)

s tRNA competition coefficient 7.78 3 10"4 (Experimental Procedures)

V volume of the cell 4.2 3 10"17 m3 (Siwiak and Zielenkiewicz, 2010)

See also Table S1.
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probabilities were estimated from ribosomal profiling data (Ingo-
lia et al., 2009) (Experimental Procedures). By varying the codon
adaptation index (CAI) (Sharp and Li, 1987) and transcript level
of the transgene across many simulations, we delineated the
regimes for which increasing codon bias is expected to increase
protein yield and by what mechanisms.
Using the green fluorescent protein (GFP) as an example

transgene, we found that increasing the CAI of a transgene
significantly improves the rate of proteins produced per mRNA
molecule only when the transgene mRNA accounts for a sub-
stantial proportion of all the mRNA in the transcriptome (Figure 2
and Table S4). For a transgene whose messages account for
50% of the cell’s mRNA content, for example, increasing CAI
from almost zero to one results in nearly 3.6-fold more proteins
produced per transcript per second (Figure 2B, triangles),
whereas optimizing CAI in a transgene expressed at only 1%
of the transcriptome results in a more modest increase (!50%)

in its rate of protein production (Figure 2B, squares). These
results help explain the divergent views of biotechnological
studies, which often report large gains in protein production
upon optimizing transgene CAI (Gustafsson et al., 2004), and
evolutionary studies of endogenous translation, which typically
report very small effects of CAI on protein production per mes-
sage (Bulmer, 1991; Tuller et al., 2010b; Gingold and Pilpel,
2011; Plotkin and Kudla, 2011). The discrepancy arises because
transgenes are usually overexpressed and comprise a substan-
tial fraction of all cellular mRNA, whereas endogenous genes are
expressed at 1% of the transcriptome or less.
Why does codon bias strongly influence protein yield only

when a gene has high mRNA abundance? The reason has to
do with the effects of codon bias on the pool of free ribosomes,
as seen in Figure 3. At equilibrium, neglecting rare abortion
events, the rate of protein production from any given mRNA
(i.e., the rate of polypeptide termination) must equal the rate of
initiation on that mRNA, which, in turn, depends primarily on
the abundance of free ribosomes in the cell. Increasing the CAI
of a gene will increase its codon elongation rates and thus
decrease the density of ribosomes on each of its mRNAs, but
the overall effect on the pool of free ribosomes is small when
the gene accounts for a small proportion (<1%) of mRNA in the
transcriptome, as virtually all endogenous genes do. As a result,
increasing the CAI of a gene at low mRNA abundance is not
expected to strongly increase the rate of protein production, as
our simulations confirm (Figure 2). By contrast, for a transgene
at very high abundance (e.g., 50% of cellular mRNA), a signifi-
cant fraction of all ribosomes in the cell are bound to its
mRNAs. Increasing the CAI of such a gene leads to a significant
increase in the pool of free ribosomes (Figure 3) and thus a sig-
nificant increase in initiation rates and protein production from
all mRNAs in the cell, including from the transgene itself.
Our simulations confirm themechanistic role of free ribosomes

in shaping the relationship between codon bias and protein
yield. For a transgene at high abundance, such as 50% of the
transcriptome, increasing its CAI causes a 3.2-fold increase in
the equilibrium number of free ribosomes in the cell (Figure 3B),
which accounts for the great majority of the concomitant 3.6-fold
increase in its protein production. By contrast, for a transgene
expressed at low levels (e.g., 1% of transcriptome), increasing
CAI results in only 3% more free ribosomes (Figure 3B), which
is not sufficient to explain the concomitant 50% increase in
transgene protein production. (Nonetheless, a 3% fitness gain
suffices to explain selection for codon bias in highly expressed
endogenous genes over evolutionary timescales.) In this case,
the gain in transprotein production is explained instead by
reduced ribosomal trafficking at the 50 end of transgene mRNAs:
about 47% more transgene mRNAs are available to be initiated
(that is, they are not bound by a ribosome at their 50 end) when
CAI z 1 compared to CAI z 0 in our simulations of such a
transgene.
In summary, increasing transgene codon bias has a modest

effect on translational efficiency, which is limited to the trans-
gene mRNAs themselves and is caused by reduced ribosomal
occupancy of their 50 ends, whereas increasing CAI can have
a huge effect on protein production globally—which is caused
by an increased pool of free ribosomes—when the transgene

Figure 1. A Computational Model of Protein Translation
The model tracks the status of all ribosomes, tRNAs, and mRNAs in a cell in

continuous time. At any time point, each tRNA and ribosomemolecule is either

diffusing freely in the cell or is bound to a specific mRNAmolecule at a specific

codon position. Translation initiation occurs when a free ribosome diffuses to

an mRNA and subsequently, with an mRNA-dependent probability, scans to

its start codon. The rate of elongation of each subsequent codon depends on

the abundance of free cognate tRNAs and their diffusion to the bound ribo-

some. All rates are based on experimentally determined parameters, including

the cell volume, numbers of mRNAs, total abundances of ribosomes and

tRNAs, and their diffusion constants. A precise definition of the Markov state

space, illustrative pseudocode, and the complete source code for simulation

are provided in the Supplemental Information. See also Figure S1, Tables S1

and S2, and Data S1 and S2.
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has very high transcript abundance. These results (Figures 2
and 3) hold whenever protein translation is limited by the pool
of ribosomes freely available for initiation, as is the case in
healthy yeast cells (Arava et al., 2003; Zenklusen et al., 2008).
When a cell is starved for tRNAs or amino acids, by contrast,
or when the pool of available ribosomes is artificially inflated,
the effects of codon bias on protein yield are due solely to
reduced ribosomal interference along translating mRNAs, as
discussed below.

Whereas Figures 2 and 3 quantify translation dynamics for a
transgene expressed at three different abundances, Table S4
provides analogous results for a full range of transcript abun-
dances. In the simulations described above, we maintained a
constant transcriptome size in nucleotides so that an increase
in the abundance of transgene mRNA comes at the expense
of endogenous transcripts. Nonetheless, we found the same
results when transgene mRNAs were simply added to the
endogenous transcriptome (Table S4 and Experimental Proce-
dures). Likewise, we found the same qualitative results for three
other simulated transgenes with very different sequences and
amino acid compositions than GFP (Table S4). Whereas Figure 2
reports the rate of protein production per transgenemRNAmole-
cule, Table S4 reports the corresponding total rate of transpro-
tein production in the cell, which is often the most important
consideration in biotechnical applications. Most of the relation-
ships between codon bias and protein yield per message also
hold for total protein yield.

Initiation Rate and Transgene Expression
Translation initiation in eukaryotes is a multistep process
involving multiple protein complexes. Our model simplifies this
process into its two critical components: the arrival of a free
ribosome at the 50 end of an mRNA molecule, whose rate is
determined by the number of free ribosomes and their diffusion
constant, and the probability that such a ribosome then success-
fully binds and scans to the start site of the mRNA to irreversibly
initiate translation. This initiation probability is known to depend
strongly on the sequence of the transcript (Andersson and
Kurland, 1990; de Smit and van Duin, 1990; Eyre-Walker and
Bulmer, 1993; Kudla et al., 2009; Tuller et al., 2010b). In the sim-
ulations above, we set the initiation probability of the transgene
at the 95th percentile of endogenous initiation probabilities
because transgenes are typically optimized for rapid initiation
(Salis et al., 2009; Welch et al., 2009). Here, we explore more
generally how the probability of transgene initiation, once a ribo-
some has diffused to a transgene mRNA, influences protein
production.
As Figure 4A shows, high codon bias will significantly increase

protein yield only when the initiation probability of a transgene
exceeds the (abundance-weighted) average initiation probability
of the endogenous transcriptome. This is true irrespective of
transgene abundance (Table S4), and it makes intuitive sense
by considering, once again, the effects of initiation and elonga-
tion on the pool of free ribosomes. Increasing a gene’s codon
bias typically reduces the density of ribosomes along its mRNA
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Figure 2. The Effects of Transgene Codon Bias on Protein Production
(A and B) We simulated translation in a wild-type yeast cell with the addition of a transgene. Transgene mRNA levels were set at 1%, 10%, or 50% of all cellular

mRNA. We measured the number of transproteins produced per transgene mRNA over 500 s in equilibrium (A). As (A) shows, increasing the codon bias of the

transgene generally increases the efficiency of its translation. However, when the transgene is expressed a low levels (e.g., transgene mRNAs constituting 1% of

transcriptome), then the gain in translation efficiency achieved by optimizing codon bias is moderate (!50% gain, comparing CAIz 1 to CAIz0, squares in [B]).

By contrast, when the transgenemRNAs constitute a large fraction of the total transcriptome, then the gain in translation efficiency by optimizing codon bias is far

greater (3.6-fold gain, triangles in [B]). See also Tables S3 and S4 and Figure S2.
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molecules due to faster elongation. When a highly expressed
transgene has high initiation probability, its ribosomal density
will be high as well, and so increasing codon bias can sub-
stantially replenish the pool of free ribosomes, which, in turn,
increases initiation rates and protein yields. However, when a
transgene has low initiation probability, regardless of its mRNA
abundance, there are relatively few ribosomes bound to its
mRNAs, and so increasing codon bias has a limited effect on
its ribosomal densities and on the pool of free ribosomes (Fig-
ure 4B and Table S4). These results underscore the critical role
of rapid initiation in allowing codon bias to modulate transgene
protein yields.

Initiation Probabilities of Endogenous Genes
One of the most challenging problems in understanding protein
translation remains the estimation of initiation rates for endoge-
nous genes. As described above, translation initiation depends
first on the arrival of a free ribosome to an mRNA and then on
the ribosome binding and successfully scanning to the tran-
script’s start codon (de Smit and van Duin, 1990). Despite their
importance, the initiation probabilities of each transcript are
the only parameters in our model that have not been measured
empirically. Therefore, we used our model to infer the gene-
specific initiation probabilities from ribosomal occupancy data
(Ingolia et al., 2009).
To make this inference, we assumed that the cell is in equilib-

rium, and we derived analytic approximations for the steady-

state density of ribosomes on each mRNA molecule (Extended
Experimental Procedures) in terms of the unknown initiation
probabilities. These approximations neglect the possibility of
ribosomal interference along each message, but they are none-
theless extremely accurate in the parameter regime of a healthy
yeast cell (R > 0.9; Figures S1A and S1B). We then inverted our
equations to infer gene-specific initiation probabilities from
observed densities of ribosomes on transcripts. An alternative
method of estimating initiation probabilities from profiling data
was independently developed by Siwiak and Zielenkiewicz
(2010). We validated that our analytical method can indeed
reliably infer initiation probabilities when we simulate ribosome
profiling data for S. cerevisiae genes with known initiation prob-
abilities (Figure S1B). Using this method, we inferred the initiation
probabilities for the 3,795 S. cerevisiae genes whose ribosomal
densities have been reliably measured (Ingolia et al., 2009).
The initiation probabilities we inferred for yeast genes vary by

many orders of magnitude. According to these estimates, the
average time between initiation events on a given mRNA mole-
cule ranges from 4 s (fifth percentile) to 233 s (95th percentile),
with a median value of 40 s. This variation provides the cell
considerable range for tuning protein levels by modulating initia-
tion probabilities of genes.
Experimentswith individual genes (Hall et al., 1982; Duan et al.,

2003) andwith large sets of coding sequences (Kudla et al., 2009)
suggest that strong 50 mRNA structure reduces the rate of initi-
ation, presumably by obstructing ribosomal-mRNA binding.
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Figure 3. The Effects of Transgene Codon Bias on the Pool of Free Ribosomes
(A andB) As in Figure 2, we simulated translation of a transgene added to awild-type yeast cell. TransgenemRNA levels were set at 1%, 10%, or 50%of all cellular

mRNA. We measured the equilibrium fraction of ribosomes that are free (unbound). Increasing codon bias of the transgene reduces the number of ribosomes

bound to its transcripts and thereby increases the pool of free ribosomes (A), especially when the transgene accounts for a large proportion of all cellular mRNA.

For example, when transgene mRNAs comprise 50% of the total transcriptome, then optimizing codon bias of the transgene from CAIz 0 to CAIz 1 causes a

3.2-fold increase in the number of free ribosomes (triangles in [B]), which explains a large proportion of the corresponding gain in transprotein production. See

also Table S4.
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Using a large set of synthetic GFP genes that vary synony-
mously, we confirmed experimentally that 50 mRNA folding plays
a predominant role in determining protein levels in S. cerevisiae
(Figure S2), which is similar to the role it plays in Escherichia
coli (Kudla et al., 2009). In light of these experiments, we
compared the initiation probabilities we estimated for 3,795
endogenous yeast genes with their predicted 50 mRNA folding
energies (nucleotides "4 to +37, Experimental Procedures) and
found a strong positive correlation (Pearson correlation R =
0.125 and p < 10"13; Figure 5A). These results suggest that 50

mRNA structure systematically modulates initiation rates across
the yeast genome.

Interestingly, we also found a negative correlation between
initiation probability and open reading frame (ORF) length
(R = "0.56 and p < 10"15; Figure 5B), even after controlling for
mRNA expression level (partial correlation, R = "0.425 and
p < 10"15). This trend suggests that shorter yeast genes have
experienced selection for faster initiation, and so it provides a
mechanistic explanation for the greater density of ribosomes
typically observed on short genes (Arava et al., 2003; Lackner
et al., 2007). Note that shorter genes are known to be more
densely packed with ribosomes despite the fact that they tend
to have significantly higher CAI (t test, p < 10"4) and presumably
faster elongation. This result again indicates the dominance of
initiation, as opposed to elongation, in determining the density
of ribosomes on transcripts.

We performed several controls to ensure that our estimates of
initiation probabilities are not biased by gene length (Extended

Experimental Procedures). We found no significant differences
in the inferred initiation probabilities when artificially doubling
the lengths of all transcripts (Kolmogorov-Smirnov, p > 0.9).
Moreover, we validated that we can reliably infer initiation prob-
abilities from simulated ribosomal profiling data even when gene
length and initiation probabilities are positively correlated (Fig-
ures S1C and S1D and Extended Experimental Procedures),
indicating that the negative correlation observed in the real yeast
data is not an artifact of our inference procedure.
Why should short genes experience selection for fast initia-

tion? Short genes are enriched for constitutively expressed
housekeeping and ribosomal genes (Hurowitz and Brown,
2003), which must produce protein as rapidly as possible. In
addition, housekeeping genes tend to have shorter 50 UTRs
and are under weaker posttranscriptional regulation (Hurowitz
and Brown, 2003; Lin and Li, 2012). The probability of successful
ribosomal binding and scanning on an mRNA may depend on
the length of its 50 UTRs; indeed, we find that genes with
shorter 50 UTRs exhibit higher inferred initiation probabilities
(p < 10"10). In addition to de novo initiation, recently terminated
ribosomes can reinitiate translation on the same mRNA, a pro-
cess known as ribosome recycling. The probability of successful
reinitiation may depend on an mRNA’s 30 UTR length (Tanguay
and Gallie, 1996; Gallie, 1998). Consistent with this hypothesis,
we find genes with longer 30 UTRs have higher initiation probabil-
ities (p < 10"5). However, unlike 50 folding energy, we find no
significant correlation between 30 UTR folding energy and the
initiation probability of a gene.
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Figure 4. The Effects of Initiation Probabilities on Protein Production and Pool of Free Ribosomes
(A and B) As in Figure 2, we simulated translation of a transgene added to a wild-type yeast cell. TransgenemRNA levels were set at 25% of all cellular mRNA.We

measured the number of transgene proteins produced per transgene mRNA (A), as well as the equilibrium fraction of ribosomes that are free (B); both quantities

are expressed relative to the case of transgene with CAI z 0. The dashed vertical line denotes the average initiation probability of endogenous yeast genes.

Increasing codon bias of a transgene significantly increases the rate of protein production only when the transgene’s initiation probability exceeds the average

initiation probability of endogenous genes. See also Table S4 and Figure S2.
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The ‘‘Ramp’’ of 50 Ribosomes
A defining feature of ribosome profiling data in yeast (Ingolia
et al., 2009) and humans (Reid and Nicchitta, 2012) is a striking
decrease in ribosome density with codon position, averaged
across the transcriptome. This observation has led to the
‘‘ramp’’ hypothesis, which attributes higher ribosome densities
to slower codons in the 50 ends of mRNAs (Tuller et al., 2010a;

Reuveni et al., 2011; Tuller et al., 2011). Slow 50 codons are
thought to reduce ribosomal interference further down the length
of the mRNA, leading to more efficient translation (Tuller et al.,
2010a).
Our simulations of translation in a yeast cell recapitulate the

empirical observation of declining ribosome density with codon
position, averaged across the transcriptome (Figure 5C). The
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Figure 5. Fast Initiation of Short Genes Causes a 50 Ribosomal Ramp
(A) Yeast genes with weak 50 mRNA structure initiate quickly. We inferred the initiation probabilities of 3,795 endogenous yeast genes from ribosomal profiling

data (Ingolia et al., 2009). A gene’s initiation probability correlates strongly with the estimated energy of its 50 mRNA structure. The gray bars indicate 1 SD of

folding energies of binned genes.

(B) Initiation probabilities of yeast genes also correlate with ORF lengths, suggesting that short genes have experienced selection for faster initiation.

(C) Simulations of translation in a wild-type yeast cell recapitulate the ‘‘ramp’’ of 50 ribosomes observed in empirical ribosomal profiling data (Ingolia et al., 2009).

The figure shows the density of ribosomes bound to mRNAs as a function of codon position, averaged across the simulated transcriptome (black). The ramp is

preserved in simulations that permute the codonswithin each gene (blue), but the ramp is disrupted when permuting the initiation probabilities among genes (red).

Thus, we infer that the ramp of 50 ribosomes is caused primarily by the trend toward faster initiation in short genes, rather than by the ordering of codons within

each gene.

See also Figures S3, S4, and S5.
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ability of our model to recapitulate this striking spatial trend is
nontrivial because we did not use any position-specific informa-
tion from the ribosomal profiling data in order to parameterize the
model (we used only the average ribosome density per mRNA).

Our computational model allows us to systematically deter-
mine which processes are responsible and which ones are
dispensable in explaining the 50-to-30 ramp of decreasing ribo-
some density. We propose an alternate explanation for this
trend: the ramp can be explained by the simple fact that shorter
yeast genes tend to have higher initiation probabilities (Figure 5B)
and correspondingly higher densities of ribosomes overall (Arava
et al., 2003; Lackner et al., 2007). Because short genes are dis-
proportionally weighted in early codon positions as opposed to
late codon positions, their elevated ribosome densitieswill cause
an apparent ramp in the transcriptome-wide average ribosome
density with codon position.

We used our model to distinguish between our initiation-driven
hypothesis and the elongation-driven hypothesis for the ramp of
50 ribosomes (Tuller et al., 2010a, 2011; Reuveni et al., 2011). If
the ramp were caused primarily by slow codons near the 50

ends of genes, then the ramp would disappear upon random-
izing codon order within each gene, whereas if the ramp were
caused primarily by faster initiation rates in shorter genes, then
it would disappear upon permuting initiation rates among genes.
We found that simulations permuting codon order within genes
still exhibit the ramp of 50 ribosome densities (Figure 5C),
whereas permuting initiation probabilities among genes removes
the ramp (Figure 5C). Both of these results support the initiation-
driven and reject the elongation-driven hypothesis for the cause
of the 50 ribosome ramp.

Aside from using our simulation model, we can also analyze
the raw ribosomal profiling data of Ingolia et al. (2009) to dissect
the causes of the apparent 50 ribosome ramp. When we remove
all positional information from the profiling data and use only the
observed average ribosome density on each mRNA, assuming a
uniform density along each mRNA, we still observe a decline in
transcriptome-wide average ribosome density with codon posi-
tion (Figure S3A). In addition, when inspecting the profiling data
on a gene-by-gene basis, we find that just asmany genes exhibit
a trend of increasing ribosome density as exhibit a trend of
decreasing ribosome density (Figure S3B and Extended Experi-
mental Procedures). Finally, we have plotted average ribosome
density by codon position for genes binned byORF length, which
is analogous to Figure S11 from Ingolia et al. (2009) but withmore
stringent length bins (Figure S4). These plots show no consistent
50-to-30 ramp, and many show 30-to-50 ramps (Figure S4). Taken
together, these analyses of the raw profiling data confirm the
conclusions drawn from our simulations: the apparent 50 ribo-
some ramp in yeast is not caused primarily by a higher density
of ribosomes near the 50 end of each message but rather by a
greater overall density of ribosomes on shorter mRNAmolecules
due to their faster rates of initiation.

Comparison to Other Models of Translation
Several models of translation, such as the ribosome flow model
and other TASEP-based models, have been used to justify the
role of codon ordering in determining spatial patterns of ribo-
somes along mRNAs (Reuveni et al., 2011; Tuller et al., 2011).

Such models of translation consider each mRNA in isolation of
all others, assuming a constant rate of initiation. In other words,
TASEP models implicitly assume a constant, inexhaustible sup-
ply of free ribosomes and free tRNAs in the cell, so that the 50 end
of each mRNA is typically saturated with ribosomes (Reuveni
et al., 2011), and the speed of elongation then sets the pace
of protein production. Such models make sense only if ribo-
somes are in overabundance in the cell. As a result, the total
number of ribosomes bound to mRNAs estimated by such
models (>53 105, Extended Experimental Procedures) exceeds
the empirical measurement of the total number of ribosomes in a
yeast cell (1.873 105 ± 5.63 104; von der Haar, 2008) by a factor
of 2.5.
When we artificially increase the number of ribosomes and

tRNAs in our simulations beyond their empirically measured
abundances, we can recapitulate the patterns produced by
TASEP models of translation (Figure S5A). In this regime, which
we argue is unrealistic, we still observe a decrease in the average
ribosome density with codon position, but this ramp is caused by
collisions along each mRNA, and it persists regardless of gene-
specific initiation probabilities or codon ordering within genes
(Figure S5B). Thus, models of translation in both initiation- and
elongation-limited regimes produce similar global patterns of
ribosomal densities with codon position but for entirely different
and contradictorymechanisms. Only the initiation-limited regime
is consistent with empirical measurements of ribosome abun-
dances in the yeast cell.

Ribosomal Interference and Codon Usage
Our simulations allow us to estimate the amount of time a ribo-
some spends waiting for a tRNA at each codon position, called
ribosomal pausing, and also the amount of time a ribosome
wastes at any position due to interference by an adjacent down-
stream ribosome that prevents further elongation, called ribo-
somal stalling. We identified the sequence features of a gene
that predispose it to ribosomal pausing or stalling (Experimental
Procedures).
Using GFP as an example transgene simulated at 50%mRNA

transcriptome abundance, we found that increasing the trans-
gene’s codon bias tends to decrease the overall density of ribo-
somes on its mRNAs, as well as the frequency of ribosomal
stalling (Figure 6). For a transgene with high CAI, the probability
of finding a ribosome bound at a given codon is negatively corre-
lated with the abundance of corresponding iso-accepting tRNAs
(Pearson correlation, R = "0.802), but this correlation is much
weaker for a transgene with low CAI (R = 0.042 and p > 0.05).
In other words, the waiting time per codon is largely determined
by the abundance of corresponding tRNAs for a gene with high
CAI. But for a gene with low CAI, ribosomes densities are higher
overall and so the waiting time at each codon is also influenced
by interference with downstream ribosomes and, therefore, is
not easily predicted from tRNA abundances. In fact, regardless
of CAI, there is a strong correlation between ribosomal stalling
at a position and the probability of ribosomal pausing 10 codons
downstream (R = 0.958 for high CAI and R = 0.644 for low CAI).
Because the probability of pausing in a high-CAI transgene
sequence is correlated with tRNA abundances, it is possible to
predict the positions of ribosomal stalling from the transgene
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sequence alone. Understanding the effects of amino acid and
codon usage on pausing and stalling may prove useful in
designing transgene sequences to minimize ribosomal interfer-
ence on its mRNAs.

Protein Translation under Stress
The simulations of translation described above were performed
under parameters of optimal cell growth. Translation dynamics
likely differ when a cell experiences stress. To investigate how
protein production is affected by stress and how a cell might
adapt in response, we simulated translation under conditions
of amino acid starvation. We modeled starvation of a particular
amino acid by reducing the abundance of its (charged) cognate
tRNAs by either 2-, 5-, or 10-fold. As expected, we found that the
rate of total protein production decreases under stress (Figures
7A and S6A). Furthermore, starvation of different amino acids
can have radically different effects on protein production. For
example, 10-fold starvation of amino acids Ala, Leu, Glu, Gln,
or Ser decreases total protein production by at least 10-fold,
whereas an equivalent starvation of Met, Trp, or His reduces pro-
tein production by less than 25% (Figure 7A). As expected, the
effect of starvation of a particular amino acid is significantly
correlated with its abundance encoded in the transcriptome
(p < 0.01 in all cases).
Our simulations reveal that decreased protein synthesis upon

starvation is caused primarily by a decrease in the pool of free
ribosomes (Figures S6A and S6B). When tRNAs corresponding
to a specific amino acid are in short supply, elongation of their
codons becomes rate limiting, as has been predicted theoreti-
cally (Elf et al., 2003) and observed experimentally (Welch
et al., 2009). As our simulations demonstrate, this effect creates
traffic jams that increase the density of ribosomes on all mRNAs
and increase the fraction of bound ribosomes that are stalled
(Figure S6D). The increased density of bound ribosomes in turn
decreases the pool of free tRNAs of all species, as each bound
ribosome sequesters one tRNA in its P site. At equilibrium, the

limited pool of free ribosomes and tRNAs reduces the initiation
and elongation rates of all transcripts (Figure S6C) and hence
retards total protein production.
Eukaryotic cells have evolved mechanisms to cope with

stress, which we can analyze mechanistically using our model
of translation. During amino acid starvation, eukaryotic cells
respond (1) by repressing the production of ribosomal proteins
and rRNAs (Moehle and Hinnebusch, 1991) and (2) by phosphor-
ylating eIF2a by GCN2, which retards the formation of initiation
complexes (Krishnamoorthy et al., 2001; Zhang et al., 2002; Hin-
nebusch and Lorsch, 2012). In order to study these adaptive
responses, we simulated the repression of ribosomes by
reducing the total number of ribosomes in the cell, and we
simulated the phosphorylation of eIF2a by reducing the initiation
probabilities of all genes by a fixed factor. Under mild stress
conditions (2- to 5-fold decrease in charged tRNAs), reducing
either the ribosome abundance or initiation probabilities was
detrimental to protein production (Figure S7 and Table S5). How-
ever, when the cell experiences severe amino acid starvation,
reducing ribosome abundance or initiation probabilities can
partly rescue protein production (Figures 7B and S7 and
Table S5). This increase in protein production, albeit not to
the levels of the wild-type cell, is quite significant. This counter-
intuitive behavior can be explained by the fact that, under
severe stress conditions, the cell becomes elongation limited
instead of initiation limited. As a result, reducing the initiation
rates of genes not only increases the pool of free ribosomes
(Table S5) but also the pool of free tRNAs, especially the ones
corresponding to the starved amino acid. This leads to an
increase in the elongation rate of all genes and, hence, overall
protein production.
Stress-induced repression of ribosomes and phosphorylation

of eIF2a have previously been thought to be adaptive because
they minimize resource waste. Our simulations indicate that
such responses may also have a direct benefit of rescuing pro-
tein production and therefore increasing cell growth.
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(A and B) The influence of codon usage and amino

acid sequence on ribosomal pausing and stalling

for a simulated transgene with either (A) low or (B)

high codon adaptation, expressed at 50% tran-

script abundance. Gray bars indicate the proba-

bility of finding a ribosome bound at a given codon

position x, and black bars indicate the probability

of finding a ribosome stalled at position x-10 (i.e., a

ribosome whose further elongation is obstructed

by another ribosome). High codon adaptation

reduces both ribosome density and ribosome

interference. The probability of a ribosome stalling

at a position correlates strongly with the proba-

bility of a ribosome pausing 10 positions ahead

(R = 0.947 for high CAI and R = 0.644 for low CAI).

For a transgene with high CAI, the probability of

finding a ribosome bound at a given codon posi-

tion is strongly anticorrelated with the abundance

of iso-accepting tRNAs for that codon (R = 0.786),

but not for a transgene with low CAI (R = "0.042).
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DISCUSSION

We have used a whole-cell simulation model to study the
dynamics of translation. This approach allows us to map the
parameter regimes in which high codon adaptation is expected
to increase transgene protein yield and by what mechanisms—
revealing the critical role of free ribosomes in constraining initi-
ation and protein production. This approach also elucidates
the basic determinants of translation dynamics in the endoge-
nous yeast transcriptome, providing estimates of initiation
probabilities for all abundant yeast mRNAs. We have found a
strong correlation between ORF length and initiation proba-
bility, which, we argue, provides a simple explanation for the
apparent ramp of 50 ribosome densities observed in ribosomal
profiling data.

Whether endogenous protein production is initiation or elon-
gation limited remains actively debated (Gingold and Pilpel,
2011; Plotkin and Kudla, 2011). It cannot easily be determined
a priori which process should be limiting because the cellular
abundances of some tRNA species are comparable to the abun-
dance of ribosomes. Nonetheless, a long string of early experi-
ments by Andersson and others established the empirical fact
that initiation limits production for most endogenous proteins
in healthy cells (Andersson and Kurland, 1990; Bulmer, 1991).
Our simulations—and especially our results on how slow codons
in an abundantmRNA retard protein production by depleting free
ribosomes (Figure 2)—confirm and quantify the longstanding
initiation-limited view of protein synthesis. Moreover, from an
evolutionary perspective, it makes more sense for a cell to err
on the side of producing a slight excess of tRNAs as opposed
to an excess of ribosomes because ribosomes are much more
costly to synthesize than tRNAs. Finally, it is important to note
that the TASEP-based models of translation (e.g., Reuveni
et al., 2011) cannot, even in principle, be used to assess whether
protein production is limited by available ribosomes because
such models assume a fixed, inexhaustible supply of free ribo-
somes. Nor can such models, which treat each mRNA molecule
independently, assess how the codon usage of a transgene influ-

ences the pool of free ribosomes in a cell and thus feeds back to
alter initiation rates of all transcripts and cell growth.
Although our simulations allow us to quantify translation

dynamics in a cell, our model makes many simplifying assump-
tions, asmentioned previously. For instance, we assume that the
total numbers of ribosomes, tRNAs, and mRNAs remain con-
stant, which we have argued is a reasonable approximation
based on empirical data (Garcı́a-Martı́nez et al., 2004; Larson
et al., 2011). Nonetheless, spatial heterogeneities in the distribu-
tions of tRNAs, mRNAs, and ribosomes (Reid and Nicchitta,
2012; Qian et al., 2012), which our model neglects, could modu-
late the effective diffusion constants of those molecules. We
have also assumed that, upon elongation, a free tRNA is instantly
recharged and available for further translation. Although this
assumption is clearly violated in reality, tRNA charging is gener-
ally thought not to limit protein production, with about 80% of all
tRNAs charged at all times due to strong negative feedback on
aminoacyl synthetases (Varshney et al., 1991; Jakubowski and
Goldman, 1992; Chu et al., 2011) (but see Brackley et al. [2011]
and Qian et al. [2012]). Nonetheless, in conditions of amino
acid starvation, the availability of charged tRNAs may become
a limiting factor in protein production (Elf et al., 2003; Welch
et al., 2009), as reflected by our simulations of translation under
stress.
Our model also ignores the details of termination, as well as

translation errors. Although missense errors do not affect overall
protein yield or the pool of free ribosomes, such errors can
reduce the amount of ‘‘functional’’ protein produced or even pro-
duce detrimental, misfolded protein products (Drummond and
Wilke, 2008, 2009). Systematically predicting which mutations
will cause nonfunctional or deleterious protein folds is not
feasible, but nonetheless, mistranslation remains a strong force
of selection on codon usage over evolutionary timescales (Drum-
mond and Wilke, 2008, 2009). By contrast, premature termina-
tion or nonsense errors affect both protein yield and the pool
of free ribosomes. Because the probability of a nonsense error
at a codon is inversely proportional to the amount of tRNAs avail-
able (Gilchrist, 2007; Shah and Gilchrist, 2010), incorporating
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nonsense errors into our model would tend to exaggerate the
effects of CAI and mRNA abundance on protein yield.
Aside from the systematic processes described above, our

model also neglects a host of other sequence-specific features
that are known to influence protein production and cellular
fitness in specific cases, such as cotranslational requirements
for ribosomal pausing (Kimchi-Sarfaty et al., 2007), internal
mRNA structures that may retard elongation (Tuller et al.,
2010b), synonymous codons required for proper splicing (Cha-
mary et al., 2006), the effects of tRNA isoforms, neighboring
codon interactions, and the recently discovered rRNA-mRNA
interactions that operate in E. coli, but not in yeast (Li et al.,
2012). Although each of these effects has been observed in a
few empirical cases, it is difficult to predict when they will
operate and what consequences they will have in general.
Like all models, our model of translation should be particularly
useful when it fails to match measurements of protein produc-
tion for individual transcripts, indicating the action of some
factor missing from the model that influences the transla-
tion of a particular gene. Nonetheless, these types of highly
sequence-specific factors are unlikely to alter the general
conclusions we have drawn from our model, such as the pre-
dominant role of free ribosomes in setting the overall pace of
translation and the role of initiation rates in causing a ramp of
50 ribosome densities.

EXPERIMENTAL PROCEDURES

S. cerevisiae Transcriptome
To define the mRNA transcriptome, we selected the 3,795 genes from

S. cerevisiae (S288c June 6, 2008 release; Cherry et al., 2012) for which Ingolia

et al. (2009) obtained reliable estimates of average ribosomal densities. We

fixed the total number of mRNAs to 60,000 (Zenklusen et al., 2008) and

sampled mRNAs based on the relative abundances measured by Ingolia

et al. (2009), ensuring that each gene had at least one mRNA represented in

the transcriptome. mRNA abundances ranged from 1 to 1,254 molecules per

gene (Tables 1 and S1). The (mRNA) transcriptome size was then defined as

the total number of nucleotides comprised by the 60,000 mRNA molecules.

Generating Transgenes with Various CAI Values
Wegenerated nucleotide sequences of GFP and other transgenes with various

different CAI values. To produce a specified CAI value, we calculated relative

synonymous codon usage (RSCU) in S. cerevisiae from 134 ribosomal genes

(Table S3) (Sharp and Li, 1987). We then sampled codons based on RSCU.

There are typically many nucleotide sequences with the same, or very similar,

CAI values. Thus, for each simulation involving transgenes, we used ten

sequences of similar CAI values and equal mRNA abundances to represent

the transgene, in order to alleviate noisy, sequence-specific effects.

Calculating 50 Folding Energy
Coding sequences and UTRs for S. cerevisiae were downloaded from

Ensemble (http://www.ensemblgenomes.org). We removed sequences with

lengths not equal to a multiple of three, with premature stop codons, or with

a continuous string of >3 ambiguous N symbols. We used RNAfold (Hofacker

et al., 1994) to estimate the mRNA folding energy from base "4 to 37 for each

gene, using default parameters.

Estimating Ribosomal Interference
To identify regions of ribosomal pausing and interference on a transgene

sequence, we simulated translation in the cell with a transgene accounting

for 50% of the (mRNA) transcriptome. We ran the simulation for 500 s in

equilibrium and sampled the state of the system every second. We used

the average number of ribosomes bound at each position to quantify the

frequency of ribosomal pausing. To quantify the frequency of ribosomal

stalling, we calculated the fraction of bound ribosomes at a position that

also have another bound ribosome ten codons (positions) ahead on that

mRNA in the same time sample.
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