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ABSTRACT Recent studies of protein evolution contend that the longer an amino acid substitution is present at a site, the less likely it is
to revert to the amino acid previously occupying that site. Here we study this phenomenon of decreasing reversion rates rigorously and
in a much more general context. We show that, under weak mutation and for arbitrary fitness landscapes, reversion rates decrease
with time for any site that is involved in at least one epistatic interaction. Specifically, we prove that, at stationarity, the hazard function
of the distribution of waiting times until reversion is strictly decreasing for any such site. Thus, in the presence of epistasis, the longer a
particular character has been absent from a site, the less likely the site will revert to its prior state. We also explore several examples of
this general result, which share a common pattern whereby the probability of having reverted increases rapidly at short times to some
substantial value before becoming almost flat after a few substitutions at other sites. This pattern indicates a characteristic tendency for
reversion to occur either almost immediately after the initial substitution or only after a very long time.
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IN the context of evolutionary theory, reversion describes a
population that returns to an ancestral character state

(Porter and Crandall 2003). While many early (Dollo 1893;
Muller 1939; Simpson 1953; Gould 1970) and more recent
(Teotónio and Rose 2001; Collin and Miglietta 2008;
Bridgham et al. 2009; Tan et al. 2011) discussions of rever-
sion consider an environmental change that confers a selec-
tive advantage to an ancestral phenotype, reversion may also
occur at the level of nucleic acids or protein sequences, with
evolution proceeding under long-term purifying selection
(Kimura 1983). Such reversions occur both because of the
strictly limited number of character states (four possible nu-
cleotides or 20 possible amino acids, Jukes and Cantor 1969)
and because selection on molecular function may constrain a
given position to only a subset of these possible character
states (Rokas and Carroll 2008; Breen et al. 2012).

It has long been hypothesized that epistatic interactions
should lower the rate of reversion, rendering evolution effec-

tively irreversible (Muller 1918, 1939). This issue has been
especially important recently, due to ongoing debate in the
field of protein evolution about how position-specific prefer-
ences for amino acidsmay change over time (Naumenko et al.
2012; Pollock et al. 2012; Ashenberg et al. 2013; Pollock and
Goldstein 2014; Bazykin 2015; Doud et al. 2015; Goldstein
et al. 2015; Risso et al. 2015; Shah et al. 2015; Usmanova
et al. 2015). Specifically, several groups have suggested that
once an amino acid substitution occurs at a particular posi-
tion, epistatic interactions with subsequent substitutions at
other positions should tend to increase the selective prefer-
ence for the derived amino acid relative to the ancestral state
(Naumenko et al. 2012; Pollock et al. 2012; Shah et al. 2015;
cf. Fisher 1930, p. 95), a phenomenon known as entrench-
ment (Shah et al. 2015). This means that a mutation that was
nearly neutral when it originally went to fixation may be-
come increasingly deleterious to revert, which would cause
a decreasing propensity to revert as time elapses.

However, the above verbal argument is not entirely con-
vincing.While it is easy to imagine some formsof epistasis that
would cause reversion rates to decrease over time, evolution-
arydynamicsonhigh-dimensionalfitness landscapes canhave
many counterintuitive properties (Conrad 1990; Gavrilets
1997; Carneiro and Hartl 2010; McCandlish et al. 2013,
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2015b; Kondrashov and Kondrashov 2015). Here we under-
take a rigorous mathematical investigation into the relation-
ship between the rate of reversion and the presence of
epistasis, for arbitrary fitness landscapes. We study this
problem under the assumption that mutation is weak rela-
tive to drift, so that the evolution of the population can be
modeled as a Markov chain on the set of genotypes (for a
review see McCandlish and Stoltzfus 2014). Our main result
concerns the dynamics at stationarity, where we consider the
probability distribution of waiting times until a focal substitu-
tion reverts, averaging appropriately over the genetic back-
grounds in which this substitution could occur. Under these
conditions, we show that for any site involved in at least one
epistatic interaction, the rate of reversion is a strictly decreas-
ing function of the time since the initial substitution.

Our first task is to provide a rigorous definition for the rate
of reversion. For a population evolving under weakmutation,
wecan treat thepopulationasa singleparticle that jumps from
one genotype on the fitness landscape to another at each
substitution event. We consider some focal set of genotypes
that includes the starting state of the population. Ifweobserve
thepopulation for longenough, thepopulationwill eventually
leave this focal set and trace a path through the space of
genotypes. At each point along this path, it has some pro-
pensity to fix a genotype in the focal set, that is, to revert.
Eventually, this propensity is realized and the population
returns to the focal set. If we continue towatch the population
for long enough, this processwill repeat itselfmany times, and
we can ask the following question: Given that the population
left the focal set t time units ago and has not yet returned to it,
what is the expected instantaneous propensity for that pop-
ulation to return to the focal set; i.e., what is the rate of re-
version as a function of time?

To study reversion it is helpful to note the following re-
lationshipbetween the rateof reversionand thedistributionof
waiting timesuntil a reversion event occurs. Asweobserve the
population evolving on the fitness landscape, every time the
population leaves the focal subset, we can record the waiting
time until it first returns. And again, if we observe the pop-
ulation for long enough, thesewaiting timeswill converge to a
particular distribution. Such a distribution naturally averages
over all of the possible mutational paths by which the pop-
ulation could leave the focal set, weighting each by its prob-
ability of occurringunder long-termpurifying selection, i.e., at
stationarity. Importantly, the reversion rate described above
is equal to the hazard function of this probability distribution
of reversion times, that is, the probability density of this distri-
bution at time t, conditioned on drawing a value t or greater.
Thus,we can study how the rate of reversion changes the longer
the population has been absent from the focal subset by study-
ing the hazard function of this distribution of reversion times.

The case of a biallelic nonepistatic (i.e., additive) fitness
landscape provides an instructive, introductory example. In
this case, it is easy to show that the distribution of return
times for a particular allele at a particular site is always ex-
ponentially distributed, corresponding to a constant hazard

function. That is, for a biallelic site on a nonepistatic fitness
landscape, the reversion rate does not change as a function of
time. We want to understand how this simple situation
changes in the presence of epistasis.

Here we show that if the focal site interacts epistatically
with at least one other site, then the hazard function of the
distribution of reversion times, and therefore the rate of
reversion, is strictly decreasing in time. This implies that
the longer a population has been away from the focal set
of genotypes, the longer the expected waiting time until it
returns to that set. Moreover, this decreasing reversion rate
is due to two factors, each of which would individually result
in a decreasing reversion rate.

The first factor is coevolution between sites as suggested
by, e.g., Pollock et al. (2012). As long as the derived allele is
resident at the focal site, it forms part of the genetic back-
ground for other substitutions, and this causes the population
to tend to spend more time at genotypes where the derived
allele is selectively favored.

To isolate the effect of this first factor, we consider a
modified process where we do not allow the focal site to
return to its original state after the initial substitution. Thus,
the dynamics after the initial substitution capture the accli-
matization of the rest of the genome to the derived state at the
focal site. While reversion events cannot occur under this
modified model, we nonetheless keep track of the reversion
rate thatwould occur if wewere to suddenly allow reversions.
We show that the reversion rate for this modified process is
decreasing for sites involved in at least one epistatic interac-
tion,whichdemonstrates that coevolutionbetween sites leads
to reversion rates that decrease in time.

The second factor that produces decreasing rates of rever-
sion is statistical in nature. This second factor arises because to
focusonthefirst timeapopulationreturnstotheancestralstate,
wemust condition on that returnnot havingyet occurredwhen
we calculate the rate of reversion. If the population is at a
genotype with a high reversion rate, it tends to actually revert,
so that the high reversion rate no longer contributes to the
expectation. This alone results in reversion rates that decrease
in time. To put this in a more biological light, populations that
have been gone for a long time from the focal subset tend to
have a low propensity to return to the focal subset, because if
they had a high propensity, they would have returned already.

To isolate the effects of this second factor,we can consider a
different, modified model in which the population never
moves to another genotype outside the focal set once it leaves
the focal set. Thus, each time the population leaves the focal
set, its propensity to return to the focal set is constant.
Nonetheless, the reversion rate under this model will be
strictly decreasing in time if there is any variation among
these genotypes in the propensity to return to the focal set.

In actuality, these two factors operate simultaneously, and
their effects on the time evolution of the rate of reversion are
coupled. Nonetheless, when both factors operate, we show
that the reversion rate is still decreasingwith the timesince the
substitution of the derived allele at the focal site.
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We also consider what occurs when more than two alleles
are available at a site and themore general case of reversion to
subsets of genotypes, e.g., reversion to the set of codons cor-
responding to a particular amino acid. The key observation in
this context is that the two factors above operate when there
is any genotype-to-genotype variation in the propensity to
return to the focal set. While for models with biallelic sites
epistasis is the only way of producing variation in these pro-
pensities, formore general models withmore than two alleles
per site the rate of reversion may be decreasing even in the
absence of epistasis.

In addition to our main results, which concern populations
that have already been evolving on the same fitness landscape
for a long time, we briefly explore how changes to the fitness
landscape affect the dynamics of reversion. Finally, we explore
several simple examples to gain intuition for themagnitude and
evolutionary importanceof reversionrates thatdecrease in time.

Materials and Methods

Population-genetic model

We consider a population evolving in continuous time under
weak mutation on an arbitrary finite-state fitness landscape
(e.g., Iwasa 1988; Sella and Hirsh 2005; McCandlish et al.
2015b). In this regime, we can model the population as a
single particle that moves from genotype to genotype at each
fixation event (see McCandlish and Stoltzfus 2014, for a re-
view). More formally, we model evolution as a continuous-
time Markov chain with a rate matrix Qfull;

Qfullði; jÞ ¼
Fð jÞ2 FðiÞ

12 e2ðFðjÞ2FðiÞÞMfullði; jÞ for i 6¼ j

2
X

k 6¼i
Qfullði; kÞ for i ¼ j;

8><
>: (1)

where FðiÞ is the scaled Malthusian fitness of genotype i and
Mfullði; jÞ is the mutation rate from i to j. We further assume
that the fitness landscapes is connected, so that there exists a
mutational path between any two genotypes i and j and that
the Markov chain defined by Qfull is reversible, so that there
exists a stationary probability distribution pfull of the chain
defined by Qfull such that pfullðiÞQfullði; jÞ ¼ pfullðjÞQfullðj; iÞ
for all i; j: This latter condition will be satisfied whenever
the neutral mutational dynamics produce a reversible
Markov chain (see, e.g., Sella and Hirsh 2005; McCandlish
et al. 2015b); a simple sufficient condition is that themutation
rates are pairwise symmetric, Mfullði; jÞ ¼ Mfullðj; iÞ for all i; j:

We are interested in the situation where a population has
just left some subset of states A and want to study the waiting
time for the population to return to that subset A. Without
loss of generality, we can order the states so that all states in A
come after the states in the complement of A, so that we can
write Qfull in block matrix form as

Qfull ¼
�
QAc EAc;A
EA;Ac QA

�
; (2)

where Ac is the complement of A and EAc;A gives the transition
rates from Ac to A and EA;Ac gives the transition rates from
A to Ac:

Our main object of study is the absorbing Markov chain
with rate matrix QAc ; where absorption corresponds to a
return to the subset A. Because we assume that a population
starts at time 0 having just left the subset of states A, this
means that an absorption event is also a reversion event, so
that we can study the dynamics of reversion by studying the
waiting time until absorption for the Markov chain with rate
matrix QAc : For brevity, we simply call this matrix Q:

The row sums of 2Q (or equivalently, the row sums of
EAc;A) give the propensity for a population currently fixed at
genotype i to return to A, and we write the rate at which such
an event occurs for a population fixed at genotype i as gðiÞ:
Let xtðiÞ be the probability that the population is fixed for
genotype i and has not yet reverted at time t. Then the time
evolution of xt is given by

xTt ¼ xT0e
Qt; (3)

where x0ðiÞ gives the probability that the population initially
left the subset A by becoming fixed for genotype i.

The hazard function of reversion times

Consider a population that first leaves subset A by fixing ge-
notype i. The probability that the population reverts, that is,
first becomes fixed for a genotype in the subset A, during the
time interval ½t; t þ dtÞ is given by fiðtÞ  dt; where

fiðtÞ[ xTt g (4)

and x0ðjÞ is 1 for i ¼ j and 0 otherwise. Thus, fiðtÞ is the prob-
ability density function of the distribution of reversion times
for a population that initially leaves subset A by fixing geno-
type i; we note that fiðtÞ is indeed a proper probability density
since Qfull defines an ergodic Markov chain and so popula-
tions return to the subset A with probability 1.

Now, a population that has already been evolving on a
fitness landscape for a long time is much more likely to leave
the subset A by fixing some genotypes rather than others. To
capture this effect, we can choose the initial distribution x0
by considering a population whose genotype is described by
the stationary distribution pfull and then condition on leav-
ing the subset A in the interval ½0; dtÞ: We thus specify the
distribution x0 as

x0ðiÞ}
X
j2A

pfullð jÞQfullð j; iÞ (5)

¼
X
j2A

pfullðiÞQfullði; jÞ (6)

¼ pfullðiÞ  gðiÞ: (7)

With this choice of initial distribution, the probability density
function for the distribution of reversion times is given by

Epistasis and the Dynamics of Reversion 1337



fðtÞ[
X
i2Ac

x0 ðiÞ fiðtÞ: (8)

Note that this is the same distribution that we would get if we
watched a single population evolve for an infinite amount of
time and recorded, each time the population left A, the wait-
ing time to return to A.

We now turn to formally defining the rate of reversion.
What we want to understand is how the rate at which a
population first returns to some set of states changes the
longer a population has been outside that set. This suggests
that we should define the reversion rate as the probability
density of a population returning to set A for the first time in
the time interval ½t; t þ dtÞ given that the population has not
already returned to set A before time t. In the more general
context of nonnegative probability distributions, this quan-
tity is known as the hazard function (or failure rate or force
of mortality). Thus, we define the reversion rate to be the
hazard function of the probability distribution of reversion
times.

For instance, consider the distribution of reversion times
at stationarity, with density given by f ðtÞ; cumulative dis-
tribution function FðtÞ[ R t

0 f ðtÞ; and complementary cumu-
lative distribution function FðtÞ[ 12 FðtÞ: Then the
reversion rate at time t is given by the hazard function hðtÞ;
where

hðtÞ[ f ðtÞ
FðtÞ: (9)

If hðtÞ is increasing in t, it means that populations that have
been away from the set A for a long time on average have
instantaneous rates of return to A larger than the average rate
of return to A of populations that have been away only for a
short time. Likewise, if hðtÞ is decreasing in t, it means that
populations that have been away from the set A for a long
time on average have instantaneous rates of return to A
smaller than the average rate of return to A of populations
that have been away only for a short time. Another quantity
of interest is the expected remaining time until reversion,
given that the population has not yet reverted at time t. This
expected waiting time can be expressed in terms of the haz-
ard function as

mðtÞ ¼
Z N

0
e2
R tþt2

t
hðt1Þ  dt1   dt2: (10)

Furthermore, from the above equation it is easy to see that if
the reversion rate is increasing in time, then the expected
remaining waiting time is decreasing in time, whereas if the
reversion rate is decreasing in time, then the expected remain-
ing waiting time is increasing.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

General theory of reversions

Our first main result is that for a population that has already
been evolving on the same fitness landscape for a long time,
the rate of reversion toA, hðtÞ; is a nonincreasing function of t,
where t is the time since the population left A. Moreover, the
reversion rate hðtÞ is strictly decreasing unless all genotypes
in Ac have the same reversion rate (i.e., gðiÞ is constant), in
which case hðtÞ is also constant. This result shows that pop-
ulations that have spent a longer time away from A cannot
possibly have higher rates of return to the ancestral character
state or shorter expected remaining waiting times until
return.

This result is a simple consequence of the fact, well known
in the mathematical literature (Kielson 1979; Aldous and Fill
2002), that the distribution of return times to a subset for a
stationary, finite-state, reversible, continuous-time Markov
chain takes the form of a mixture of exponential distributions
(in the mathematical literature, such a distribution is known
as a “completely monotone” distribution). It is easy to show
that the hazard function for such a distribution is strictly de-
creasing except in the case of a pure exponential distribution.
In Appendix A, we provide elementary proofs of these facts as
well as the fact that that the distribution of return times is a
pure exponential only in the case when gðiÞ is constant.

Connection to epistasis: An immediate implication of this
result is that the reversion rate for any site in a fitness
landscape that is involved in an epistatic interaction must
be strictly decreasing in time. This is because epistatic inter-
actions result in variation in the genotype-specific rates of
return to A, gðiÞ; since different backmutations have different
fitness consequences.

More formally, consider a biallelic fitness landscape with L
sites andwith forward and backwardmutation rates ofml and
nl; respectively, at site l. Thus, Mfullði; jÞ ¼ ml if j is produced
from i by a forward mutation at site l, Mfullði; jÞ ¼ nl if j is
produced from i by a backmutation at site l, andMfullði; jÞ ¼ 0
otherwise. Furthermore, let us pick a focal site l  * and order
the states such that all genotypes that have the allele pro-
duced by the forwardmutation are in set Ac and indexed first.
We are interested in the distribution of reversion times at
site l  *:

We say a site is not involved in any epistatic interactions if
its fitness effect is constant, in the sense that if genotype i is
produced from genotype j by a forward mutation at site l*;
then the scaled selection coefficient FðiÞ2 FðjÞ is equal to
some constant Sl*: In this case gðiÞ is constant and equal to
nl*ðiÞKð2Sl*Þ; where KðSÞ ¼ S=ð12 e2SÞ is the function re-
lating the scaled selection coefficient to the rate of
evolution. Thus if the selection coefficient of the forward
mutation is constant, then hðtÞ is also constant. On the other
hand, suppose l  * is involved in an epistatic interaction.
Then there exist i; i9 2 Ac and j; j9 2 A such that (1) i is
produced from j by a forward mutation at site l*; (2) i9 is
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produced from j9 by a forward mutation at site l*; and
(3) FðiÞ2 Fð jÞ 6¼ Fði9Þ2 Fð j9Þ: But then gðiÞ 6¼ gði9Þ
becauseQfullði; jÞ ¼ nl*KðFð jÞ2FðiÞÞ 6¼ nl*KðFð j9Þ2Fði9ÞÞ ¼
Qfullði9; j9Þ since KðSÞ is strictly increasing and hence in-
vertible. Thus, in this case hðtÞ is strictly decreasing.

The above argument shows that hðtÞ is strictly decreasing
for a biallelic fitness landscape if and only if the focal site is
involved in at least one epistatic interaction. For fitness land-
scapes that include more than two alleles at a site, by con-
trast, the notation and argument become somewhat more
involved (Appendix B), but the end result is weakened to
the statement that epistasis is sufficient for hðtÞ to be strictly
decreasing. Indeed, even for nonepistatic multiallelic fitness
landscapes we generically expect hðtÞ to be strictly decreas-
ing. This is because even if fitness is additive between sites,
the different alleles within a site will have different fitness
differences from the focal allele and therefore different prob-
abilities of fixation that result in a nonconstant gðiÞ:

Do reversions also become more deleterious? Besides the
relationship betweendecreasing reversion rates and epistasis,
it is interesting to ask about the relationship between de-
creasing reversion rates and the mean selection coefficient of
reversions. This relationship is not necessarily simple. First,
this is because different genotypes might have different mu-
tation rates to the subset A, so that the decrease in hðtÞmight
be realized by the nonreverting subset of the population be-
coming concentrated at genotypes with lowmutation rates to
the subset A rather than by having more negative selection
coefficients for such mutations. However, even if all geno-
types in Ac produce mutations to subset A at the same rate,
the decrease in hðtÞmight not correspond to reversion muta-
tions becoming more deleterious. This is due to the nonline-
arity of the function KðSÞ relating the scaled selection
coefficient S to the rate of evolution. However, using the fact
that KðSÞ is convex (McCandlish et al. 2015a), if each geno-
type in Ac produces mutations at rate m to a single corre-
sponding genotype in set A, then Jensen’s inequality tells us
that hðtÞ $m  KðStÞ; where St is the average scaled selection
coefficient of the reversion at time t and this average is taken
with respect xt=FðtÞ: Thus, if for any twe have hðtÞ,mKðS0Þ;
then the mean selection coefficient of a reversion among
those populations that have not yet reverted is strictly less
than the mean selection coefficient of a reversion immedi-
ately after the initial substitution away from A. This provides
a sufficient condition for the mean selection coefficient of
reversions to have decreased in time.

Expected reversion times: If the reversion rate is nonincreas-
ing over time, then the expected waiting time until reversion
must be greater than what would be predicted based on the
initial reversion rate alone; i.e., we must havemð0Þ$1=hð0Þ:
In fact, there is a simple formula for the expected time until
reversion that holds even if the Markov chain describing the
weak mutation dynamics is not reversible. In particular, con-
sider the expected rate of returns to A at stationarity whenwe

condition on a population being in the subset Ac; i.e.,X
i2Ac

pfullðiÞgðiÞ=
X

i2Ac
pfullðiÞ: Then mð0Þ is simply the re-

ciprocal of this rate (see Appendix C).
However, because the reversion rate is nonincreasing in

time, this mean value does not necessarily provide a very
informative summary of the dynamics of reversion. For in-
stance, consider the casewhere hðtÞ is initially high, but drops
to a very low value. Under these circumstances, it can be the
case that a large proportion of populations revert rapidly, but
the subset of populations that do not revert rapidly may have
extremely long expected reversion times, so that the mean
reversion timemð0Þ is really an average over two very differ-
ent subsets of populations. Intuitively, this situation will often
arise when the set A is the basin of attraction of a fitness peak.
Most populations that cross into the fitness valley around A
will return to A rather than cross the valley, but a small subset
will cross the fitness valley and end up at another fitness
peak. The expected return time for this subset of populations
might then be extremely long.

Why is the reversion rate decreasing? To gain an intuitive
understanding forwhy the reversion rate isdecreasing in time,
it is helpful to distinguish between two different phenomena
that each contribute to this decrease.

The first phenomenon is the acclimatization of the rest of
the genotype to being in the subset Ac: For instance, in the
context of protein evolution, once a mutation has fixed at a
focal site, it forms part of the genetic background that deter-
mines the fitness effects of mutations at other sites. For sites
that interact epistatically with the focal site, this will tend to
favor substitutions whose effects are more positive when the
derived allele is present at the focal site.

Such acclimatization of the genome tends to result in a
decreasing reversion rate at the focal site. To make this idea
precise, let us consider a modified process where we do not
allow populations to revert to A after they enter the subset Ac:

Following this initial entrance, the dynamics are thus gov-
erned by a rate matrix Q*; where Q*[Qþ Dg and Dg is
the diagonal matrix whose i; ith entry is gðiÞ: For ease of
exposition, let us also assume that the subset Ac is connected
(i.e., one can always evolve from any state in Ac to any other
state in Ac without returning to A; the more general case is
handled in Appendix A).

Even though we do not allow reversions to occur back to A
under this modified process, we can still keep track of the
reversion rate that would occur were we to allow reversions.
When the population initially leaves the subset A, it is distrib-
uted as x0ðiÞ}pfullðiÞgðiÞ:However, as time elapses under the
modified process, the probability that the population is fixed
for genotype i 2 Ac tends to a distribution that is }pfullðiÞ:
Now, the initial reversion rate under the modified process is
equal to the expected value of gðiÞ with respect to the first of
these distributions, while the asymptotic reversion rate under
the modified process is equal to the expected value of gðiÞ
with respect to the second one. Clearly, the reversion rate is
higher under the first distribution, since this distribution
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differs from the second one only in that it is more concen-
trated at values with high gðiÞ: Indeed in Appendix Awe show
the stronger result that the reversion rate is strictly decreas-
ing for the modified process unless gðiÞ is constant, in which
case the reversion rate is also constant.

The second phenomenon is a statistical phenomenon hav-
ing to dowith the fact that we are interested in the first return
to A. Even if there was no acclimatization to the initial sub-
stitution (and therefore no coevolution), the reversion rate
would tend to be decreasing in time due to genotype-specific
variation in the rates of return to A, i.e., the gðiÞ: This effect
occurs because populations that have not reverted even after
a long time have likely spent most of this time at genotypes
where returns to A are unlikely. To put this another way, if the
population had spent a great deal of time at genotypes with
high return rates, then it would have returned already. This
phenomenon is well known in the reliability and demography
literature, where unaccounted for heterogeneity can result in
failure or mortality rates that decrease in time even when
individual failure or mortality rates are constant (Vaupel
and Yashin 1985).

To isolate this second phenomenon, we consider a second
modified process in which a population that leaves A by fixing
genotype i experiences no additional substitutions until it
returns to A; i.e., the return rate for such a population is
always gðiÞ: The rate matrix for this process is thus 2Dg:

The derivative of the reversion rate of this process is equal
to 21 times the variance in g conditional on not having yet
reverted. Since variances are nonnegative, the derivative of
the reversion rate is nonpositive, so that the reversion rate is
nonincreasing.

Whilewehave constructed these twomodifiedprocesses to
separate the effects of acclimatization of the genome and the
effects of conditioning on not having yet reverted, these two
effects interact to determine the dynamics of the original
process. The fact that both phenomena tend to lead to de-
creasing reversion rates when there is variation in g (or more
precisely for the second phenomenon, variation in its non-
zero elements) helps clarify why the reversion rate is non-
increasing for the original process.

Reversion rates under nonstationary evolution: So far, we
have concentrated on the case of a population that has already
been evolving on a fixed fitness landscape for a long time, so
that each possible way of leaving the subset A is weighted by
its stationary probability. However, we can also gain some
strong intuitions for the behavior of the reversion rate in
the more general case, where we allow the initial probability
vector x0 to be arbitrary.

In particular, in this more general setting we can show that
the time evolution of the (sign-reversed) reversion rate is
isomorphic to the time evolution of the mean fitness of an
infinite population on a suitable fitness landscape. The basic
idea is that the time evolution of the probability distribution
describing the genotype of a population conditional on not
having yet reverted can be viewed as the time evolution of the

frequencies of genotypes in an infinite population whose
mutational dynamics are specified by the off-diagonal entries
of the matrixQ and where the Malthusian fitness of genotype
i is given by 2gðiÞ: That is, gðiÞ plays the role of a genotype-
specific death rate.

More formally, let ptðiÞ be the probability that a population
is fixed for genotype i at time t given that it has not returned
to the subset A by time t. Then ptðiÞ¼ xtðiÞ=

P
jxtðjÞ:Writing I

for the identity matrix, 1 for the vector of all 1’s, and D2g for
the diagonal matrix with 2g down its main diagonal, we
have

d
dt
pTt ¼

�
xTt 1

�
xTt Q2 xTt

�
2xTt g

�
�
xTt 1

�2 (11)

¼ pTt Qþ pTt
�
pTt g

�
(12)

¼ pTt Q*þ pTt
�
D2g 2

�
pTt ð2gÞ�I�: (13)

This is simply the “parallel” version of the replicator equation
(i.e., where mutation occurs independently from reproduc-
tion), with Q  * as the rate matrix of the mutational process
and2g as the vector of fitnesses. Furthermore, the reversion
rate at time t is then given by pT

t g; which is simply the mean
fitness pT

t ð2gÞ with its sign reversed. The derivate of the re-
version rate is then

d
dt
�
pTt g

� ¼ pTt Q*g þ pTt
�
D2g 2

�
pTt ð2gÞ�I�g (14)

¼ pTt Q*g2Varpt
g; (15)

where Varpt
g is the variance in the return rate with respect to

the probability distribution pt: Here, the term pT
t Q*g gives

the effect on the reversion rate due to acclimatization of the
genotype to being in the subset Ac; while 2  Varpt

g captures
the effects of conditioning on not having yet reverted. Unlike
under stationarity, the effects of acclimatization for the non-
stationary case can either increase or decrease the reversion
rate. However, conditioning on not having yet reverted still
always produces a bias toward a decreasing reversion rate,
since 2  Varpt

g is nonpositive.

Examples

The preceding results describe a general tendency for the
reversion rate—quantified as the hazard function of the dis-
tribution of return times—to be decreasing in time. Here we
present some simple examples to explore the magnitude and
evolutionary consequences of this effect.

Crossing fitness valleys: Consider the caseof abiallelicfitness
landscape with a symmetric fitness valley. In particular, con-
sider the casewhere genotypes ab andABhave equalfitnesses
and scaled selection coefficient S with respect to the valley
genotypes Ab and aB and mutations occur independently at
each locus at rate 1. Let us now examine the rate of reversion
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at the first site, so that the set A ¼ fab; aBg and leaving A
corresponds to an a / A substitution. Given that the popu-
lation has already been evolving on this fitness landscape for
a long time and that an a/ A substitution has just occurred,
we want to understand the distribution of times until an A/
a substitution occurs as a function of the depth of the fitness
valley S.

This distribution of times is easy to understand intuitively.
For S less than �2 the dynamics are approximately neutral
and the waiting time for reversion is approximately expo-
nential with mean 1. For larger S, the dynamics are sub-
stantially affected by the fitness valley. The best way to
understand these dynamics is by considering where the pop-
ulation is immediately after an a / A substitution. At sta-
tionarity, we know that the frequency of substitutions into
the fitness valley must be equal to the frequency of substitu-
tions out of the valley. This means that at stationarity, half
the time the population will have just fixed the valley geno-
type Ab and half the time it will have fixed the peak genotype
AB: Populations that fix the peak genotype AB are unlikely to
revert in the short term, whereas populations that fix the
valley genotype Ab are likely to move to one or the other
peak in the short term, with equal probability. Thus, roughly
speaking, after a short time the population will either have
reverted (with probability 1/4, since half the time it fixes the
valley genotype and then immediately reverts half the time)
or be fixed at the fitness peak AB (with probability 3/4). This
means that reversions happen either very shortly after the
initial substitution—and this occurs 1/4 of the time—or only
after the long waiting time needed for deleterious fixations
to occur.

Figure 1 shows these dynamics as a function of S. The top
row shows the probability that an A / a reversion has oc-
curred as a function of time and the bottom row shows the
reversion rate, hðtÞ: The leftmost column shows the neutral
case. The reversion rate is constant and the probability that a
reversion has occurred by time t is given by 12 e2t: The
center and right columns show the case where S ¼ 2:5 and
S ¼ 5; respectively. In both cases, the reversion rate is high
initially, starting at �  S=2 (probability 1/2 of starting at the
valley genotype in which case returns to A occur at roughly
rate S). The reversion rate drops rapidly as populations leave
the valley genotype, approaching an asymptotic rate of�  3=2
the substitution rate of a deleterious fixation 2S=ð12 eSÞ
(populations that have not yet reverted are likely at the AB
fitness peak; reversion occurs either via a direct substitution
of a at rate2S=ð12 eSÞ or via fixation of the valley genotype
Ab, which occurs at rate 2S=ð12 eSÞ; followed by reversion
with probability 1/2). Thus, the reversion rate is initially high
but rapidly approaches a much lower rate, which results in a
characteristic “knee” in the probability that a population has
reverted by time t, where a population has a substantial prob-
ability of having reverted at short times (corresponding to a
steep initial increase in the fraction reverted as a function of
time), but populations that do not revert during this initial
period have much lower reversion rates (resulting in a slow

increase in the fraction reverted after this initial period); see
Figure 1, top row and center and right columns.

Mutational robustness and the rate of reversion: As a
second example,we consider a biallelicfitness landscapewith
one focal site and L other sites, where each genotype is viable
with probability p and all viable genotypes are neutral rela-
tive to each other. All sites experience forward and reverse
mutations at rate 1. This example is motivated by the model
used by Kondrashov and colleagues to study long-term puri-
fying selection (Breen et al. 2012; Usmanova et al. 2015). We
want to understand the dynamics of reversion at the focal
site.

We proceed with a heuristic treatment based on the as-
sumption that Lp � 1: In this regime, we treat each genotype
as having a constant number Lp of neutral neighbors acces-
sible by mutations at nonfocal sites. The key idea is that
immediately after a substitution at the focal site, the back
substitution is viable and so reversions initially occur at rate
1. However, once an additional substitution at a nonfocal site
accrues, the probability that the reversion mutation at the
focal site is viable is only p. Thus, the reversion rate drops
very rapidly from 1 to �p.

In particular, after a substitution at the focal site, the
expected substitution rate is 1þ Lp and the probability that
the first substitution is a reversion is 1=ð1þ LpÞ: Thus, we can
approximate the probability distribution of waiting times un-
til reversion as a mixture of two exponential distributions.
The first distribution has rate 1 and is weighted by the prob-
ability that the population reverts before any other substitu-
tion occurs, 1=ð1þ LpÞ: The second exponential distribution
has rate p and is weighted by the probability that a population
experiences a substitution at another site before the reversion
event occurs, Lp=ð1þ LpÞ: This suggests that the probability
of having reverted by time t can be approximated by

FðtÞ � 12
1

1þ Lp
e2ð1þLpÞ  t 2

Lp
1þ Lp

e2t: (16)

Based on a similar argument, we can approximate the re-
version rate as

hðtÞ � e2ð1þLpÞ  t þ p
�
12 e2ð1þLpÞ  t

�
; (17)

where thefirst term corresponds to the initial reversion rate of
1, which applies with probability �e2ð1þLpÞ  t (the probability
of not having yet having experienced the first substitution),
and the second term corresponds to the expected reversion
rate given that one substitution has occurred, p, weighted by
the probability that a substitution has already occurred,
12 e2ð1þLpÞ  t:

Althoughanexact treatmentof anyparticular realizationof
themodel is possible using the associated ratematrixQfull; the
construction of this matrix is not computationally feasible for
large L. We thus proceeded by simulation. A population that
has just experienced a substitution at the focal site must be at
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a viable genotype and have just come from a viable genotype
that differs only at the focal site. We simulated the subse-
quent evolution of such a population under weak mutation,
keeping track of the genotypes produced by mutation and
whether they are viable (with probability p) or inviable (with
probability 12 p) until the first reversion event at the focal
site. For each choice of parameters, we repeated this proce-
dure 1,000,000 times.

The resulting reversion times are shown in Figure 2 for
L ¼ 100: The top row shows the probability of having
reverted by time t, and the bottom row shows the reversion
rate as a function of time. The left column shows the exact
theoretical results for the case where all genotypes are viable
(shaded lines). The center and right columns show the results
for p ¼ 0:5 and p ¼ 0:1; respectively, with the approximate
theoretical results given by Equations 16 and 17 shown as
shaded lines and the simulation results shown as solid lines.
For the case p ¼ 0:5 the reversion rate drops rapidly from 1 to
�p. Indeed, this drop is so rapid that relatively few popula-
tions actually revert at the higher initial rate, which is as
we expect, since the probability that a population
reverts before experiencing another substitution is only
� 1=ð1þ 1003 0:5Þ � 0:02: On the other hand, for the case
p ¼ 0:1 we see a modest knee in the time evolution of the
fraction of populations that have reverted. This is because a
larger fraction � 1=ð1þ 1003 0:1Þ � 0:09 of populations
revert before experiencing another substitution, and the sub-
sequent substitution rate is lower, �0.1 instead of 0.5.

Intuitively, the knee shape illustrated in Figure 2 for small
p and large Lp arises because for small p there are fewer other
loci at which a substitution can occur, and so populations stay
at the genotype they initially arrived at—with its elevated
reversion rate—longer, which leads to a substantial probabil-
ity of having reverted at short times. However, eventually

such populations leave the initial genotype, at which time
they experience lower reversions rates, �   p: This produces
a pattern where the probability of having reverted becomes
substantial at short times but thereafter grows very slowly.
Although the theory is complicated and so we do not discuss
it in detail here, it is worth noting that when p is small enough
that Lp becomes small the waiting time until reversion again
becomes short. Intuitively, this occurs because for very small
Lp the only viable mutation after a substitution at the focal
site is the back mutation at the focal site, and thus essentially
all reversions occur at the initial elevated rate.

More generally, this simple model suggests that the dy-
namics of reversion should depend on the degree of muta-
tional robustness even when fitness is allowed to take more
than twovalues. The key insight is that just after a substitution
at a focal site, the population is not at a random genotype, but
rather at one where the back substitution rate is likely to be
unusually high. Now, if there is a high degree of mutational
robustness, then the neutral substitution rate is high, and the
population will leave this special genetic background quickly
(cf. McCandlish 2013), so that when most reversions occur,
the substitution rate for the back mutation is much lower
than it was initially. When the degree of mutational robust-
ness is very low, by contrast, the population will often stay at
the initial genotype until the reversion occurs by a direct back
substitution, which occurs at the initial rate.When the degree
of mutational robustness is intermediate, we see a combina-
tion of these two dynamics: a substantial fraction of popula-
tions revert via the direct back substitution from the initial
genotype, and another substantial fraction revert at the lower
rates that are typical of other genetic backgrounds. This in-
termediate degree of robustness thus produces a characteris-
tic knee in the time evolution of the probability that the
population has reverted.

Figure 1 Reversion rates for a biallelic fitness landscape with a symmetric fitness valley. Genotypes ab and AB have equal fitness and scaled selective
advantage S relative to genotypes Ab and aB, and mutations occur at each site at rate 1 in each direction. The dynamics are shown for returns to the
focal subset A ¼ fab; aBg; assuming that the population has just left the subset A at stationarity. Each column corresponds to a different value of S. The
top row shows the probability that the population has reverted as a function of time, and the bottom row shows the reversion rate, hðtÞ:
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Amino acid reversion in codon models: The two examples
we have considered so far describe the dynamics of reversion
at a single site in a biallelic fitness landscape. For our final
example we consider the dynamics of a single amino acid
under a codonmodel. Stop codons are treated as inviable, and
mutations occur at each site with equal probability to each of
the three alternative nucleotides (Jukes and Cantor 1969)
with a total rate of 1 so that time is measured in the expected
number of substitutions per synonymous site (Ks). We imple-
ment selection by assuming that genotypes with the focal
amino acid are neutral relative to each other and have a
scaled selective advantage S over all other amino acids.

Figure 3 shows the dynamics of reversion under this
model for the neutral case, S ¼ 0; and also for the case where
the focal amino acid has a moderate selective advantage,
S ¼ 5 (each amino acid corresponds to one line; the fraction
reverted is shown in the first row and hðtÞ is shown in the
second row). The key insight for understanding these dynam-
ics is that, just after a population leaves the set of codons that
code for the focal amino acid, it can still mutate back to the
focal amino acid. However, after additional substitutions ac-
crue, the population is likely to be at a genotype that is no
longer mutationally adjacent to the focal amino acid, leading
to a decreasing reversion rate over time. In particular, for
both S ¼ 0 and S ¼ 5; the reversion rate drops from its initial
value to nearly its asymptotic value by Ks ¼ 1: In the case of
S ¼ 5; this produces a pronounced knee in the shape of the
curve describing the time evolution of the probability that a
population has reverted: more than one-third of populations
are expected to revert almost immediately, whereas the
remaining populations take a long time before they eventu-
ally revert.

Discussion

We have analyzed reversions in a population that has just left
some focal set of genotypes A. Our main interest has been the
rate at which the population first returns to the set A—that is,
the rate at which the population experiences a reversion—
and how this rate changes over time. For a population that
has already been evolving on a constant fitness landscape for
a very long time, we have shown that the rate of reversion to
A is nonincreasing in time. Furthermore, when the set A con-
sists of all genotypes with a particular allele at a focal site in a
biallelic fitness landscape, we have shown that the reversion
rate is strictly decreasing if and only if epistasis is present at
the focal site. We explored some simple examples of these
reversion dynamics, to gain intuition about their magnitude
and evolutionary impact.

We have also analyzed the case of a population that has
been evolving on the fitness landscape only for a short time
and whose initial state is therefore not drawn from the
stationary distribution of the evolutionary dynamics. In this
case we have shown that the time evolution of the reversion
rate is, after a change in sign, mathematically identical to the
time evolution of the mean Malthusian fitness for an infinite
population evolving on an alteredfitness landscapewhere the
substitution ratesof theoriginalfitness landscapeplay the role
of mutation rates and the rates of returns to A play the role of
genotype-specific death rates.

One consequence of reversion rates that decrease in time is
a distinctive pattern, whereby a population either reverts very
quickly after the initial substitution with some moderate
probability or else takes a very long time to revert. If we
consider the probability of having reverted plotted as a

Figure 2 Dynamics of reversion for a biallelic fitness landscape with 100 sites other than the focal site, where each genotype is viable with probability p,
all viable genotypes are neutral relative to each other, and each site experiences forward and backward mutations at rate 1. The top row shows the
probability that a population has reverted as a function of time, and the bottom row shows the reversion rate. Theoretical results are shaded lines, and
simulations are solid lines. Solid circles in the bottom row calculate the reversion rate in terms of temporal bins of width 0.05, where the reversion rate in
a bin is calculated as the number of simulations that revert during that bin divided by the average of the number of simulations that have not yet
reverted at the beginning of that bin and the number of simulations that have not yet reverted at the end of that bin. Insets show details of dynamics at
short times. Simulation results are based on 1,000,000 runs for each value of p.
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function of time, such a pattern can be seen as a “knee”,
where this curve rises rapidly at short times until the prob-
ability of having reverted is substantial and then shifts to
rising much more slowly. This pattern occurs because the
expected rate of substitutions back to A at stationarity is
particularly high if we condition on just having left A. As
time passes and other substitutions accrue, the features of
the genetic background that resulted in the unusually high
substitution rate to A are lost. One consequence of this knee-
like phenomenon is that the mean waiting time until rever-
sion may not be very informative about the actual dynamics
of reversion.

Our results show that at stationarity, a strictly decreasing
reversion rate occurswhenever there is genotype-to-genotype
variation in the rate of substitutions to the set A. When the set
A corresponds to the set of genotypes with a particular allele
at a particular site, the presence of an epistatic interaction
between the focal site and at least one other site is sufficient
to produce such genotype-specific variation and hence suffi-
cient for the reversion rate to be strictly decreasing. However,
other factors besides epistasis can also be responsible for
genotype-to-genotype variation in the rate of substitutions
to A. For instance, in our codon example, which has more
than two alleles per site, the structure of the genetic code
itself results in variation in the substitution rate to any par-
ticular amino acid, because the focal amino acid will not be
mutationally accessible from all other codons. More gener-
ally, the genotype–phenotype map will tend to produce
genotype-to-genotype variation in the rate at which the focal
phenotype becomes fixed in the population, so that the re-
version rate for phenotypes should typically be decreasing.
Finally, it is worth mentioning that while we define a site at
the genotypic level by the feature that itsmutational dynamics
are independent of the states of the other sites, context-
dependent mutation could also produce genotype-to-genotype
variation in rates of substitution to A, which would again be
sufficient for decreasing reversion rates (provided the result-
ing Markov chain is still reversible).

It is also interesting to ask the converse question: What
conditions could possibly produce reversion rates that in-
crease in time? To do this, it is helpful to consider a way of
restating our main result: if evolution can be modeled as a
reversible Markov chain on the set of genotypes, then at
stationarity the reversion rate to any subset of genotypes is
nonincreasing with the time since the population left that
subset. A reversible Markov chain is a Markov chain such that
the probability of moving through any cycle of states in one
direction is equal to the probability of moving around that
cycle in the reverse direction (this is known as Kolmogorov’s
criterion; see, e.g., Kelly 1979, section 1.5). Thus, a reversible
Markov chain is simply a Markov chain with no cyclic biases.
This means we can restate our main result as saying that
reversion rates can increase in time, starting from stationar-
ity, only if some factor induces a cyclic bias in the Markov
chain describing evolution among genotypes.

It is known that, under weak mutation, adding frequency-
and time-independent natural selection does not add any
cyclic bias if no such bias is present in themutational dynamics
(i.e., the weak mutation Markov chain under constant
frequency-independent selection is reversible if the muta-
tional dynamics are reversible; see, e.g., Sella and Hirsh
2005). However, wemay expect reversion rates to sometimes
increase in time under conditions where fitness is nontransi-
tive (e.g., Kerr et al. 2002) or when environments change in a
cyclic manner (e.g., Leslie et al. 2004; Hensley et al. 2009;
Bergland et al. 2014). Under these types of conditions, natu-
ral selection tends to push populations through a cycle of
genotypic states in a periodic manner, which means that re-
version becomes more likely as time passes.

Another condition thatmight produce increasing reversion
rates iswhen the evolutionary dynamics are not stationary, for
instance at the beginning of an adaptive transient. We have
provided intuition for such circumstances by noting that,
under time- and frequency-independent selection, the time
evolution of the reversion rate can be recast as the time
evolution of the mean fitness of an infinite population on

Figure 3 Dynamics of reversion for a codon model where
the focal amino acid has scaled selection coefficient S over
all other amino acids and mutations occur at rate 1 at each
site with an equal probability of producing each of the
alternative nucleotides. The top row shows the probability
of having reverted by time t and the bottom row shows
the reversion rate, hðtÞ; where each of the 20 curves cor-
responds to a different choice of one of the 20 amino
acids as the focal amino acid. Under moderate selection
for the focal amino acid (S ¼ 5), the time evolution of the
fraction of populations that have already reverted shows a
pronounced knee.
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an alternative fitness landscape. This intuition suggests that
the reversion rate should tend to go down just as the mean
fitness tends togoup,unless the infinitepopulation starts at an
unusually high fitness or the reversion rate starts at an un-
usually low value. In the case of an adaptive transient, early
adaptive substitutions will tend to be strongly favored by
natural selection, meaning that the initial reversion rate
is unusually low. In these circumstances we may expect
the reversion rate to increase, particularly in the case of
diminishing-returns epistasis, where mutations that have
strong positive effects early in adaptation have much smaller
effects toward the end of adaption (Draghi and Plotkin 2013;
Kryazhimskiy et al. 2014; cf. Hartl et al. 1985; Hartl and
Taubes 1996).

Our results help bring clarity to a recent controversy con-
cerning site-specific amino acid preferences during protein
evolution (Naumenko et al. 2012; Pollock et al. 2012;
Ashenberg et al. 2013; Pollock and Goldstein 2014; Bazykin
2015; Doud et al. 2015; Goldstein et al. 2015; Risso et al.
2015; Shah et al. 2015; Usmanova et al. 2015). First, our
results show that in the presence of epistasis, reversion rates
will be decreasing in time and that the longer a population
has left a set of genotypic states, the longer the expected time
until reversion. However, our results show that when consid-
ering reversion to an amino acid state, these results already
hold even if there is no epistasis at the amino acid level,
because of the structure of the genetic code itself. Indeed, it
is worth noting that the epistasis already present in the ge-
netic code is sufficient to produce many of the dynamical
signatures of epistatic evolution even if fitnesses are additive
at the amino acid level. For instance, it is easy to specify site-
specific amino acid preferences that produce multipeaked
fitness landscapes at individual codons; such codons can have
extremely long equilibration times, contrary to the analyses
of Kondrashov et al. (2010) and Breen et al. (2013) who
consider only the case where every amino acid can mutate
to every other amino acid. Overall, decreasing reversion rates
are a generic feature of evolution under long-term purifying
selection and not a definitive signature of epistasis at the
amino acid level.

Second, it is helpful to distinguish between what is
expected when we consider a population that is conditioned
to remain outside a subset of states vs. one that is simply
restricted from entering that subset (cf. Ashenberg et al.
2013; Pollock and Goldstein 2014). The difference is
whether, after a substitution, one considers only populations
that have not yet reverted or whether all populations are
prevented from reverting (but where we nonetheless keep
track of the average propensity to return to the focal subset
if such substitutions were to be permitted). We have shown
that these two processes have different, but related, math-
ematical characteristics. If there is any variation in the
genotype-specific rates of return to the focal subset, then
the reversion rate will be strictly decreasing for both process-
es. While acclimatization of the rest of the genome to being in
a new region of the fitness landscape contributes to decreas-

ing reversion rate for both processes, for the conditioned pro-
cess there is also a statistical effect because populations that
spend more time at genotypes with a rapid rate of return to
the focal subset are likely to revert quickly. In addition, there
is a simple mathematical relationship between these two
processes: the asymptotic rate of transitions back to the focal
subset when populations are restricted from entering it is the
rate of an exponential distribution with mean equal to the
expected reversion time, and this rate is bounded between
the initial reversion rate and the asymptotic reversion rate
when conditioning. Thus, while Ashenberg et al. (2013) have
criticized simulations where reversions are prevented from
occurring as being unrealistic and misleading, such simula-
tions are in fact more relevant to understanding the evolu-
tionary process than would appear at first glance.

Finally, our results help clarify the relationship between
various quantities observed in the literature and the entrench-
ment phenomenon described here. Observed changes in site-
specific amino acid preferences (Bazykin 2015) detected
either by direct measurement (Doud et al. 2015) or through
comparative sequence analysis (Naumenko et al. 2012) are
sufficient to produce reversion rates that decrease in time
under the assumption that sequence evolution occurs as a
stationary reversible Markov chain. Furthermore, the nonlin-
ear mapping between protein stability and fitness means that
even if the stability effects of amino acid substitutions are
more or less conserved (Risso et al. 2015), fitness effects will
often be background dependent (Ashenberg et al. 2013),
which is again sufficient to produce reversion rates
that decrease in time. Fits of covarion-like models (Fitch
and Markowitz 1970; Galtier 2001; Penny et al. 2001;
Usmanova et al. 2015) also suggest that rates of reversion
should be decreasing in time, although as emphasized above
the same qualitative effect can occur simply due to the struc-
ture of the genetic code (Figure 3). It is also natural to ask
about the predictions of the theory developed here for quan-
tities observed in nature. Our predictions for the expected
change in the selection coefficient of reversion are relatively
weak. This is because the dynamics of the reversion rate and
the dynamics of the expected selection coefficient of a rever-
sion mutation may have qualitatively different shapes as a
result of the nonlinearity in the probability of fixation and
genotype-to-genotype variation in mutation rates. None-
theless, it is the substitution rate that is most closely related
to the evolutionary dynamics. This is why we can derive
strong results on the reversion rate, but not on the time evo-
lution of the average selection coefficient of reversions.

Our results are also relevant to a variety of studies that con-
sider the temporal relationships between substitutions on phy-
logenies (Rogozin et al. 2008; Povolotskaya and Kondrashov
2010; Naumenko et al. 2012; Goldstein et al. 2015; Zou and
Zhang 2015). Importantly, by viewing sequence evolution as a
stationary reversible Markov chain on the branches of a phy-
logeny, we see that waiting times for reversion events in the
sense described here are very closely related to waiting times
for parallel changes in sister taxa because both events
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involve the Markov chain leaving and then reentering a focal
subset as we look along the branches of the phylogeny. How-
ever, more work is needed to extend our results to a phylo-
genetic setting. This is because the distribution of waiting
times observed on a phylogeny is different from the distribu-
tion considered here where we condition on a substitution
having just occurred. In addition, there are a variety of prac-
tical problems with inferring substitution histories such as
apparent homoplastic substitutions due to incomplete line-
age sorting (Mendes and Hahn 2016) and the fact that sub-
stitution histories are typically inferred using site-independent
models even when there is substantial evidence for epistasis
(e.g., Goldstein et al. 2015). Nonetheless, multiple studies in
this broader literature (Rogozin et al. 2008; Naumenko et al.
2012; Soylemez and Kondrashov 2012; Goldstein et al. 2015;
Zou and Zhang 2015) support our qualitative prediction that
reversions and parallel substitutions should occur either very
rapidly or only after a long waiting time.
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Appendix A: The Distribution of Reversion Times at Stationarity

Our analysis of the distribution of reversion times at stationarity relies on the fact that thematrixQ;which gives the rates for the
absorbing Markov chain describing the evolution dynamics until the time of reversion, admits an eigendecomposition. We
develop this eigendecomposition and its properties and then use these results to show that the distribution of reversion times at
stationarity can be expressed as a mixture of exponential distributions. We then use a very similar analysis to understand the
modified process where reversion events are not permitted to occur.

We derive the eigendecomposition of Q by first noting some features of the larger matrix Qfull: Because the Markov chain
defined by Qfull is reversible, it satisfies the detailed balance relation pfullðiÞQfullði; jÞ ¼ pfullð jÞQfullð j; iÞ for all i; j: As a conse-
quence, the matrix D1=2

pfull
QfullD

21=2
pfull

is symmetric, where Dy denotes the diagonal matrix with the vector y as its main diagonal.
Now, define the vectorp of length n ¼ jAcj such that pðiÞ ¼ pfullðiÞ=

P
j2Acpfullð jÞ for i ¼ 1; . . . ; n: The matrix D1=2

p QD21=2
p is

thus symmetric, since it is simply a constant times a diagonal block of the symmetric matrix D1=2
pfull

QfullD
21=2
pfull

: We can thus
expand D1=2

p QD21=2
p in terms of its eigenvalues and eigenvectors as

2D1=2
p QD21=2

p ¼
Xn
k¼1

lkuku
T
k ; (A1)

where 0, l1 #l2 #l3 # . . . # ln are the eigenvalues of 2D1=2
p QD21=2

p and the eigenvectors uk are orthonormal (the eigen-
values are real because 2D1=2

p QD21=2
p is symmetric and negative because they are same as those of 2Q; where Q is the

generator of an absorbing Markov chain so that all of its eigenvalues have negative real parts).
We can now use this decomposition of 2D1=2

p QD21=2
p to likewise decompose Q: In particular, multiplying Equation A1 by

D21=2
p from the left and D1=2

p from the right gives us

2Q ¼
Xn
k¼1

lk   rk   l
T
k ; (A2)

where lk ¼ D1=2
p uk and rk ¼ D21=2

p uk are the left and right eigenvectors of 2Q associated with lk:

Using this decomposition, we can then write the probability density function of the distribution of reversion times at
stationarity as

f ðtÞ ¼ xTt g (A3)

¼ xT0e
Qtg (A4)

¼ xT0

 Xn
k¼1

e2lkt   rk   l
T
k

!
g (A5)

¼ 1
pTg

  gTDp

 Xn
k¼1

e2lkt   rk   l
T
k

!
g (A6)

¼ 1
pTg

Xn
k¼1

e2lkt  
�
lTkg
�2

; (A7)

where we have used the fact that at stationarity x0ðiÞ}pðiÞgðiÞ (Equation 7). Thus, f ðtÞ is a mixture of exponential densities
with rates l1; . . . ; ln where the exponential density with rate lk has weight ðlTkgÞ2=ðlk  pTgÞ:

We just showed that the distribution of reversion times at stationarity is afinitemixture of exponential distributions.We now
show that the hazard function for any finite mixture of exponential distributions is nonincreasing. In particular, if fðtÞ is a finite
mixture of exponential densities

f ðtÞ ¼
X
m

amume2umt (A8)
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with am; um . 0;
X

m
am ¼ 1; then the hazard function is

f ðtÞ
FðtÞ ¼

X
m
amume2umtX
m
ame2umt

: (A9)

Differentiating the hazard function, we see that that the sign of the derivative depends only on the sign of

FðtÞf 9ðtÞ2 F9ðtÞfðtÞ ¼ FðtÞf 9ðtÞ þ ðf ðtÞÞ2 (A10)

¼ 2
X
i; j

aiaju2j   e
2ðuiþujÞt þ

X
i; j

aiajuiuj   e2ðuiþujÞt (A11)

¼ 2

0
@ X

i; j with  i6¼j

aiaj   e2ðuiþujÞt�u2j 2 uiuj
�1A (A12)

¼ 2

0
@ X

i; j with  i. j

aiaj   e2ðuiþujÞt�u2j 2 2uiuj þ u2i
�1A (A13)

¼ 2

0
@ X

i; j with i. j

aiaj   e2ðuiþujÞtðui2ujÞ2
1
A; (A14)

which is nonpositive since each term in the sum is a product of nonnegative quantities and hence nonnegative. Thus, the hazard
function is nonincreasing.

We turn now to the analysis of themodified processwith ratematrixQ* ¼ Qþ Dg;whereDg is the diagonalmatrixwith g on
its main diagonal. Let us start by assuming that Ac is mutationally connected; we will return to the case of disconnected Ac

momentarily. First, note thatQ  * differs fromQ only on its diagonal entries. Thus, following our analysis forQ;D1=2
p Q  *D21=2

p is
symmetric and can be expanded in terms of its eigenvalues and eigenvectors as

2D1=2
p Q  *D21=2

p ¼
Xn
k¼1

l*k   u
*
ku

*T
k ; (A15)

where 0 ¼ l*1 , l*2 # l*3 # . . . # l*n are the eigenvalues of 2D1=2
p Q  *D21=2

p and the eigenvectors u*
k are orthonormal (we have

0 ¼ l*1 , l*2 because Ac is connected and so the continuous-time Markov chain generated by Q  * is ergodic). With this de-
composition in hand, we can write l*k ¼ D1=2

p u*
k and r*k ¼ D21=2

p u*
k as the left and right eigenvectors of2Q  * associated with l*k

and write the reversion rate under the modified process as

f  *ðtÞ ¼ xT0e
Q*tg (A16)

¼ xT0

 Xn
k¼1

e2l*
kt   r*k   l

*T
k

!
g (A17)

¼ 1
pTg

gTDp

 Xn
k¼1

e2l*
kt   r*k   l

*T
k

!
g (A18)

¼ pTg þ 1
pTg

Xn
k¼2

e2l*
kt  
�
l*Tk g

�2
; (A19)

where we have used the fact that the row sums ofQ  * are all 0 so that r*1 is the vector of all 1’s and thus l*1 ¼ Dpr*1 ¼ p: Because
l*k . 0 for k$ 2; this expression is clearly strictly decreasing in t unless n ¼ 1 (inwhich case gðiÞ is obviously constant) or l*Tk g=
0 for k$2: In the latter case, we have u*T

k D1=2
p g= 0 for all k$ 2; so that D1=2

p gmust be orthogonal to all the u*
k for k$ 2: Since
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the u*
k are an orthonormal basis ofℝn; the only direction remaining forD1=2

p g is u*
1; so that gmust be in the direction of r*1;which

is the vector of all 1’s. Thus, in that case g is also constant.
So far, we have shown that provided thatAc is mutationally connected, at stationarity the reversion rate underQ  * is constant

if gðiÞ is constant and otherwise it is strictly decreasing. Now we consider the case where Ac has several disconnected
components, A1; . . .Al: Clearly the total reversion rate is a weighted average of the reversion rates for each disconnected
component when analyzed separately as above. If gðiÞ is nonconstant within any one of these components, then that term in
the average is strictly decreasing in time and hence the reversion rate as a whole is strictly decreasing. Thus, for general Ac the
reversion rate at stationarity under Q  * is constant if gðiÞ is piecewise constant in the sense of being constant for each of the
disconnected components of Ac; otherwise it is strictly decreasing.

Appendix B: Role of Epistasis in Multiallelic Fitness Landscapes

In themain text,we showed that for biallelicfitness landscapes, the reversion rate at stationarity for a site is adecreasing function
of time if and only if that site is involved in an epistatic interaction with another site. Here we show that for multiallelic fitness
landscapes the presence of an epistatic interactionwith another site is a sufficient conditionunder stationarity for reversion rates
at the focal site to be decreasing.

First, we must establish some notation for multiallelic fitness landscapes. If we have a fitness landscape over L sites, we can
label the nl $2 alleles at the lth site, al;1; . . . ;al;nl ; and write the mutation rate between al;k and al;m as mal;k/al;m

: Thus, if
genotypes i and j differ at more than one site, we have Mfullði; jÞ ¼ 0; otherwise they differ at exactly one site l in which case
Mfullði; jÞ ¼ mal;k/al;m

; where genotype i has the al;k allele at site l and genotype j has the al;m allele at site l.
Without loss of generality we can define the focal set A to be the set of genotypes with allele a1;1 in site 1. We want to show

that if site 1 has an epistatic interaction with at least one other site, then the gðiÞ are not constant, since this is sufficient to show
that the reversion rate is decreasing at stationarity.

Now, either ma1;k/a1;1
. 0 for all alleles k$2 at site 1 or not. If not, then we can find an allele k$ 2 at site 1 such that

ma1;k/a1;1
¼ 0: But since the Markov chain defined byQfull is reversible, we know there is also an allelem$ 2 at site 1 such that

ma1;m/a1;1
. 0; since otherwise populations could never return from Ac to A. Thus g is nonconstant because it is zero for

genotypes with allele a1;k at site 1, but positive for genotypes with allele a1;m at site 1.
We thus turn to the case where ma1;k/a1;1

. 0 for all k. Our strategy is to show that if all alleles at a site can mutate to all the
other alleles, then the presence of any epistatic interaction between one site and another is sufficient, by the transitivity of
fitness differences, to guarantee the existence of a set of four genotypes towhichwe can apply the argument in themain text for
biallelic sites. Now, if site 1 is epistatic with some other site, then without loss of generality we can let this other site be site 2.
Because site 1 is epistatic with site 2, there exist, by the definition of epistasis, genotypes i; i9; j; j9 and alleles
a1;k;a1;m;a2;k9;a2;m9 such that the following holds:

1. Genotypes j and i9 are both single mutants with respect to genotype i, and j9 is the corresponding double mutant. In
particular, genotype j is formed from genotype i by a single a1;k/a1;m mutation, genotype i9 is formed from i as a single
a2;k9/a2;m9 mutation, and the double-mutant genotype j9 is formed from genotype i by the combination of an a1;k/a1;m

mutation and an a2;k9/a2;m9 mutation.
2. fðiÞ2 fð jÞ 6¼ fði9Þ2 fð j9Þ:

If either k ¼ 1 orm ¼ 1; then the selection coefficient of the reversion mutation to a1;1 depends on the genetic background
and so g is nonconstant by the same argument as given for the two-allele case in the main text. Therefore suppose k 6¼ 1 and
m 6¼ 1: In that case we can find genotypes h and h9 such that h is identical to i and j except that it has the a1;1 allele at site 1 and
likewise h9 is identical to i9 and j9 except that it has the a1;1 allele at site 1. Now, if it were the case that both
fðhÞ2 fð jÞ ¼ fðh9Þ2 fð j9Þ and fðiÞ2 fðhÞ ¼ fði9Þ2 fðh9Þ; then we would have

fðiÞ2 fð jÞ ¼ ðfðiÞ2 fðhÞÞ þ ðfðhÞ2 fð jÞÞ ¼ �f�i9�2 f
�
h9
��þ �f�h9�2 f

�
j9
�� ¼ f

�
i9
�
2 f
�
j9
�
:

But fðiÞ2 fð jÞ 6¼ fði9Þ2 fð j9Þ; so either fðhÞ2 fð jÞ 6¼ fðh9Þ2 fð j9Þ or fðiÞ2 fðhÞ 6¼ fði9Þ2 fðh9Þ: Thus, when choosing a set of
four genotypes to demonstrate the existence of an epistatic interaction between sites 1 and 2, we could have chosen h and h9
instead of either i and i9 or j and j9: However, this new choice of four genotypes contains two different reversion mutations to
a1;1 with different selection coefficients and the same mutation rates, so that the nonconstancy of g follows by the same
argument given for the two-allele case in the main text.
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Appendix C: Expected Time Until Reversion

We want to derive the expected time until reversion to a set A at stationarity given that the population has just left A. To study
this time, it is helpful to define a modified Markov chain on a state space Ac [ fag;where the new state a takes the place of the
set A in the original chain.

In particular, consider the chain with rate matrix

Qcollapsed ¼
�
QAc g
k  xT0 2k

�
; (C1)

where k is the expected substitution rate from A to Ac at stationarity forQfull conditional on the population being in A, and x0ðiÞ
is the probability of the population being at genotype i 2 Ac underQfull at stationarity, conditional on a substitution from A to Ac

having just occurred. By construction, this new chain with rate matrix Qcollapsed has the same distribution of reversion times to
a at stationarity as the original chain at stationarity did to A.

Furthermore, if Ac contains n elements, it is easy to verify that the stationary distribution of Qcollapsed is given by the vector
ðpfullð1Þ; . . . ;pfullðnÞ;pfullðAÞÞ;wherepfullðAÞ ¼

P
i2ApfullðiÞ; since the new chain conserves the stationary rate of substitutions

both from A to i and from i to A for all states i 2 Ac:

Analyzing this new chain, a straightforward application of the reward–renewal theorem for the renewal process defined by
returns to a and reward equal to the waiting time before leaving a after each return gives us

pfullðAÞ ¼
1
tak

(C2)

(Grimmett and Stirzaker 2001, theorem 10.5.10), where ta is the expected waiting time for a population currently at a to leave
a and then return to a for the first time.

Now, a population leaving a and then returning to a must first leave a and then revert to a. The expected time before the
population leaves a is 1=k and then the expected waiting time to revert to a ismð0Þ; the quantity that we are trying to develop
an expression for. Thus, we have

ta ¼ 1
k
þmð0Þ: (C3)

Plugging Equation C3 into Equation C2 and solving for mð0Þ gives us

mð0Þ ¼ 12pfullðAÞ
k  pfullðAÞ

: (C4)

At stationarity, the total rate that populations arrive at a must be equal to the rate that they leave a, so we
have k  pfullðAÞ ¼

P
i2AcpfullðiÞgðiÞ; and of course 12pfullðAÞ ¼

P
i2AcpfullðiÞ: Substituting these expressions into Equation

C4 yields

mð0Þ ¼
 X

i2AcpfullðiÞgðiÞX
i2AcpfullðiÞ

!21

; (C5)

i.e., the expected waiting-time reversion is equal to the reciprocal of the expected substitution rate to A at stationarity
conditional on the population being in Ac; as required.
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