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Abstract16

Across the major taxonomical domains, synonymous codons of an amino acid are17

found to be used in unequal frequencies. This codon usage bias – both in terms of the18

degree of bias and the identity of codons used – is highly variable, even among closely19

related species. Within a species, genome-wide codon usage bias reflects a balance20

between adaptive and non-adaptive microevolutionary processes. Variation in these21

microevolutionary processes results in across-species variation in codon usage bias. As22

codon usage bias is tightly linked to important molecular and biophysical processes, it23

is critical to understand how changes to these processes drive changes to the microevo-24

lutionary processes. Here we employ a population genetics model of coding sequence25

evolution to quantify natural selection and mutation biases on a per-codon basis and26

estimate gene expression levels across the budding yeasts Saccharomycotina subphy-27

lum. We interrogate the impact of variation in molecular mechanisms hypothesized to28

be driving the microevolution of codon usage. We find that natural selection and muta-29

tion biases evolved rapidly over macroevolutionary time, with high variability between30

closely related species. The majority (324/327) of yeasts exhibited clear signals of31

translational selection, with selection coefficients being correlated with codon-specific32

estimates of ribosome waiting times within species. Across species, natural selection33

on codon usage correlated with changes to ribosome waiting times, indicating that34

tRNA pool evolution is a major factor driving changes to natural selection on codon35

usage. We find evidence that changes to tRNA modification expression can contribute36

to changes in natural selection across species independent of changes to tRNA gene37

copy number, suggesting tRNA modifications also play a role in shaping natural selec-38

tion on codon usage. Our work firmly establishes how changes to microevolutionary39

processes can be driven by changes to molecular mechanisms, ultimately shaping the40

macroevolutionary variation of a trait.41
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Introduction42

The genetic code is “degenerate” – the 61 amino acid-encoding codons are translated into 20 amino43

acids, meaning multiple codons must be ascribed to the same amino acid. Across all domains of44

life, synonymous codons are used at unequal frequencies, a phenomenon known as codon usage bias45

(CUB) [1–6]. The CUB of a genome reflects a balance between the microevolutionary processes of46

natural selection, mutation, and genetic drift shaping the synonymous codon usage frequencies for47

a particular amino acid [7]. Natural selection for efficient or accurate translation – often termed48

“translational selection” – is hypothesized to be the primary driver of adaptive CUB due to the49

correlations between codon usage and the tRNA pool and the bias towards codons corresponding to50

more abundant tRNA in highly expressed genes [5, 8–11]. Under translational selection, selection51

on synonymous mutations is strongest in highly expressed genes due to their effects on potential52

energetic burden of ribosome pausing or protein misfolding [10, 12–14]. However, beause highly53

expressed genes constitute only a small portion of protein-coding sequences in a genome, genome-54

wide CUB (i.e., the most frequently used synonyms genome-wide) is determined by mutation bias55

and drift. Other microevolutionary processes, such as GC-biased gene conversion [15–17], can also56

shape patterns of codon usage within a genome and can sometimes obscure signature of selection.57

CUB varies across species, both in terms of the degree of bias and the identity of synonymous58

codons used most frequently [1, 5, 6, 11, 18–22]. The fact that CUB varies across species is clear – the59

causes are not. Variation in CUB on macroevolutionary timescales ultimately reflects changes to the60

underlying microevolutionary processes that drive CUB within a genome. Mechanistic evolutionary61

models providing theoretically justified (i.e., rooted in population genetics theory) estimates of62

evolutionary parameters (e.g., the strength of natural selection) are necessary to determine how63

variation in these processes leads to the observed macroevolutionary trends in CUB. Moreover,64

CUB is tightly linked to the molecular processes of DNA replication (mutation bias) and protein65

synthesis (translational selection), such that macroevolutionary variations in the microevolutionary66

processes shaping CUB are hypothesized to reflect changes to the underlying molecular processes.67

Some studies observed correlations between CUB and the relevant molecular processes [3, 5, 11, 20],68

but a lack of formal estimates of population genetics parameters at the level of individual codons69
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limits our ability to link changes in microevolution to these processes.70

Here, we quantify variation in natural selection and mutation biases that drive CUB across 327

Saccharomycotina budding yeasts [11, 23]. To do so, we employ the Ribosomal Overhead Cost

version of the Stochastic Evolutionary Model of Protein Production Rates (ROC-SEMPPR) – a

powerful population genetics model for quantifying CUB [24–28]. Unlike many popular heuristic

approaches for quantifying CUB, ROC-SEMPPR disentangles the effects of natural selection from

mutation biases by quantifying changes in codon usage as a function of gene expression. Specifically,

for a given gene g with average gene expression (technically, protein production rate) ϕg, the

probability pg,i of seeing codon i is

pg,i ∝ e−∆Mi−∆ηiϕg

ROC-SEMPPR estimates natural selection ∆η and mutation bias ∆M per codon, allowing us to71

systematically investigate how and why these microevolutionary processes vary on macroevolution-72

ary timescales. Building from a previous examination of 49 budding yeasts, we find a substantial73

percentage of the Saccharomycotina subphylum (≈ 20%) exhibit significant across-gene variation in74

codon usage not attributable to translational selection, suggestive of other non-adaptive evolution-75

ary processes that can shape codon usage bias. We find multiple lines of evidence for translational76

selection on CUB across most species. Particularly noteworthy, we find codon-specific shifts in77

natural selection are correlated with changes to the tRNA pool across species. Such a correlation78

is often presumed, but our work directly shows how a key feature of protein synthesis (the tRNA79

pool) shapes natural selection on codon usage. Additionally, we explore how mutation biases change80

across species, finding them to be strongly correlated with changes to GC%, but find inconclusive81

support for a general role of the evolution of mismatch-repair (MMR) genes in driving changes to82

mutation biases (see Supplemental Text).83
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Results84

We applied ROC-SEMPPR to quantify the strength and direction of natural selection and mutation85

bias shaping CUB across the 327 Saccharomycotina budding yeasts. Previous work by us and others86

indicate that within-genome variation in nucleotide usage can arise due to non-adaptive processes87

(e.g., GC-biased gene conversion) that can obscure signatures of translational selection [26, 28, 29].88

To account for this variation, for each species, we performed correspondence analysis on the absolute89

codon frequencies of each gene followed by CLARA clustering (a k-medoids clustering) of the90

first 4 principal axes to separate genes into 2 sets potentially subject to different non-adaptive91

nucleotide biases. Following [28], we compared two model fits to assess the potential impact of92

within-genome variation in non-adaptive nucleotide biases – any processes biasing codon usage that93

does not scale with gene expression ϕ. We refer to these models as “ConstMut” and “VarMut”.94

The ConstMut model assumes mutation bias is constant across all genes; in contrast, the VarMut95

model allows mutation bias ∆M to vary between the 2 gene sets determined by the clustering of the96

correspondence analyses axes (termed the “Lower GC3 Set” and “Higher GC3 Set”, see “Material97

and Methods: Identifying within-genome variation in codon usage bias”). Using the correlations of98

ROC-SEMPPR predicted gene expression ϕ with empirical gene expression as our comparisons of99

the ConstMut and VarMut models, the VarMut model better fit 58 of the 327 species (approximately100

18%), consistent with intragenomic variation in non-adaptive nucleotide biases within these species.101

Across the 58 species better fit by the VarMut model, the predicted-empirical correlations between102

the VarMut and ConstMut models differ by a median value of 0.31, indicating better predictions103

of gene expression based on codon usage when using the VarMut model. Across the other 269104

species, the predicted-empirical correlations between the VarMut and ConstMut models differ by105

a median value of -0.05, indicating generally worse or negligible differences in predictions of gene106

expression based on codon usage when using the VarMut model (Figure S1) – this is consistent with107

unsubstantial intragenomic variation in non-adaptive nucleotide biases. For subsequent analyses,108

we use the selection and mutation bias estimates from the best model fit for each species.109
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Natural selection and mutation biases shaping codon usage are110

highly-variable among close relatives111

To understand the evolution of codon usage on macroevolutionary timescales, it is critical to quan-112

tify the variability in the evolutionary forces shaping species-specific CUB. We performed hierar-113

chical clustering of species based on the estimates of (1) (scaled) selection coefficients ∆η and (2)114

mutation biases to both understand how these parameters varied across species and to what extent115

these parameters reflect the shared ancestry of the budding yeasts. To further clarify the meanings116

of these parameters, the selection coefficients ∆η = si,jNe in a gene of average expression, where117

si,j is the unscaled selection coefficient between synonymous codons i and j and Ne is the effective118

population size. Mutation bias ∆M = log(
µi,j

µj,i
) where µi,j is the mutation rate between synony-119

mous codons i and j. All parameter estimates from our model fit are relative to a reference codon,120

specifically the alphabetically last codon, with a negative value indicating a codon is “favored”121

relative to the reference codon.122

Based on the clustering of selection coefficients, the direction of natural selection on codon123

usage is largely consistent across the tree (Figure 1A). For example, NNC codons for most 2/3-124

codon (Asn, Tyr, His, Phe, Asp, Ser2, Ile) and 4-codon (Val, Thr, Ser4, Ala) amino acids are125

selectively-favored across the majority of species; this was not the case for either 6-codon amino126

acid (Arg, Leu). For the 2-codon amino acids Lys, Glu, and Gln (all NNA/NNG), the Lys codon127

AAGwas generally selectively-favored relative to AAA, but the NNA codons for Glu (GAA) and Gln128

(CAA) are favored across most species (although many species did favor NNG). 34 species exhibit129

dramatic shifts in natural selection on codon usage relative to the remaining 293 species (Figure130

1A, row dendrogram labels 1 and 2). These species have significantly weaker correlations between131

ROC-SEMPPR predicted gene expression and empirical gene expression (Welch two-sample t-test132

p = 3.499E − 08) compared to the other 293 species, suggesting poor model fits (Figure 1A, Obs.133

vs. Pred. Gene Expr.). Surprisingly, the clustering of selection coefficients only weakly reflects the134

phylogeny of the Saccharomctoina yeasts, consistent with little similarity between closely-related135

species. Many species from the same clade fall into the same cluster, but most clades are divided136

into separate groups (Figure 1A, Clade color bar). To ensure that the poorly fit species did not137
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obscure the similarity of closely related species in our clustering, we removed the 34 species with138

suspected poor model fits and re-performed the clustering of selection coefficients. We find overall139

little agreement between the clustering of selection coefficients and phylogeny as measured by140

the cophenetic correlation to quantify the overall pairwise similarity between species within the141

dendrograms. A high cophenetic correlation implies variation in selection coefficients recapitulates142

the evolutionary relationships between the species. We find the cophenetic correlation between the143

clustering of selection coefficients and the phylogeny was 0.35, consistent with selection coefficients144

only weakly reflecting the phylogeny of the Saccharomycotina yeasts.145

As with the selection coefficients, we examined how mutation biases ∆M varied across the146

327 yeasts. Generally, mutation biases favor AT-ending codons over GC-ending codons across the147

majority of the subphylum (Figure 2 and Figure S2), consistent with the overall AT-bias of the148

Saccharomycotina subphylum [11]. Similar to the selection coefficients, we performed hierarchical149

clustering of mutation biases to assess the similarity of mutation biases between closely related150

species (Figure 2 and Figure S2, Clade color bar). Mutation biases are more variable between151

closely related species compared to selection coefficients as indicated by the smaller groupings152

of species by clade (Figure 2 and Figure S2, Clade color bar). Consistent with this qualitative153

observation, the cophenetic correlations between the hierarchical clustering of mutation biases and154

the phylogenetic tree after removing the 34 poorly fit species is 0.14 or 0.13 depending on the155

use of Lower GC3% and Higher GC3% sets for species better fit by the VarMut model. Even156

more so than selection coefficients, across-species variation in mutation biases poorly reflects the157

Saccharomycotine phylogeny.158

As an orthogonal analysis to quantify the overall similarity of natural selection and mutation159

biases between closely related yeasts (i.e., phylogenetic signal), we estimated a multivariate version160

of Blomberg’s K (Kmulti) using the R package geomorph [30]. Selection coefficients exhibit a161

greater phylogenetic signal (Kmulti = 0.437) than mutation biases (Kmulti = 0.224 if using Lower162

GC3% set, Kmulti = 0.156 if using Higher GC3% set). Taken together, both analyses support163

greater variation in mutation biases between closely related species, but this should not distract164

from the fact that both natural selection and mutation biases are highly variable. It is often165

assumed that a weaker phylogenetic signal is due to higher evolutionary rates. However, this is166
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Figure 1: (A) Heatmap representing the selection coefficients ∆η across the 327 Saccharomy-
cotina subphylum. Red indicates a codon is disfavored by selection relative to the reference
synonymous codon (the alphabetically last codon for each amino acid), while blue indicates
the codon is favored relative to the reference codon. Black indicates cases where the codon
CTG codes for serine – in these species, CTG is treated separately from the serine codons
(see Materials and Methods). Row-wise dendrogram represents the hierarchical clustering
of selection coefficients across species based on dissimilarity as estimated by 1 - R, where
R is the Spearman correlation between the selection coefficients of two species. Numbers
represent the result of splitting the clustering into 3 groups of species. Column-wise den-
drogram represents the hierarchical clustering of selection coefficients across codons based
on Euclidean distance. The Clade color bar indicates the major clade of the species, as
defined previously[11]. The Obs. vs. Pred. Gene Expr. color bar represents the Spearman
correlation between empirical gene expression estimates and ROC-SEMPPR predicted gene
expression estimates ϕ per species. The VarMut fit color bar indicates if the model fit used
for a given species was VarMut (black) or ConstMut fit (white). (B) Example of the correla-
tion between empirical estimates of gene expression and ROC-SEMPPR predicted estimates
of gene expression for species in the three clusters as labeled on the species-wise dendrogram
in (A).

not always the case. Phylogenetic signal can degrade due to strong stabilizing selection towards a167

single optimum [31]. We fit a univariate Ornstein-Uhlenbeck model of trait evolution (via the R168

package geiger [32]) to our estimates of natural selection and mutation biases for each codon to169
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quantify the strength of stabilizing selection for each trait. We find that the strength of stabilizing170

selection α is generally greater for estimates of mutation biases than estimates of selection (median171

α∆MLower GC3%
= 0.011, α∆η = 0.005, Wilcox rank sum test p = 3.051E − 9). We note the highest172

α values are for estimates of natural selection (Figure S3A). We obtain a similar result if using173

mutation bias estimates from the Higher GC3% set (Figure S3B). This is consistent with stronger174

stabilizing selection acting on the factors shaping mutation biases (or other non-adaptive nucleotide175

biases) relative to natural selection, resulting in a stronger degradation of phylogenetic signal.176

Below, we focus on the molecular mechanisms responsible for the observed across-species177

changes in natural selection on codon usage. We perform similar analyses to examine changes to178

estimates of mutation biases and find clear correlations between our mutation bias estimates and179

genome-wide GC%. However, our results relating these changes to a specific molecular mechanism180

are rather inconclusive (see Supplemental Text).181

Selection for translation efficiency is a prevalent force shaping within-182

genome variation in codon usage183

The strength and direction of natural selection on codon usage varies across species, suggesting184

underlying changes to the molecular processes that shape natural selection. Translational selec-185

tion (e.g., selection against translation inefficiency) remains the predominant hypothesis regarding186

genome-wide adaptive CUB, particularly in microbes. The translational selection hypothesis leads187

to two testable predictions: (1) codon usage will covary with gene expression and (2) highly ex-188

pressed genes are biased toward codons with faster elongation rates. Such predictions are testable189

with ROC-SEMPPR’s parameters: (1) estimates of evolutionary-average gene expression ϕ are190

expected to be positively correlated with empirical estimates of gene expression, and (2) selection191

coefficients ∆η are expected to be positively correlated with ribosome waiting times, the inverse of192

elongation rates (i.e., slower codons are disfavored by natural selection).193
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Figure 2: (A) Heatmap representing the mutation biases ∆M across the 327 Saccharomy-
cotina subphylum. Red indicates mutation is biased against a codon relative to the reference
synonymous codon (the alphabetically last codon for each amino acid), while blue indicates
mutation is biased towards a codon relative to the reference codon. Black indicates cases
where the codon CTG codes for serine – in these species, CTG is treated separately from
the serine codons (see Materials and Methods). The row-wise dendrogram represents the
hierarchical clustering of mutation biases across species based on dissimilarity as estimated
by 1 - R, where R is the Spearman correlation between the selection coefficients of two
species. Numbers represent the result of splitting the clustering into 3 groups of species.
Column-wise dendrogram represents the hierarchical clustering of mutation biases across
codons based on Euclidean distance. The Clade color bar indicates the major clade of the
species, as defined previously [11]. The Obs. vs. Pred. Gene Expr. color bar represents
the Spearman correlation between empirical gene expression estimates and ROC-SEMPPR
predicted gene expression estimates ϕ per species. The VarMut fit color bar indicates if the
model fit used for a given species was VarMut (black) or ConstMut fit (white).

ROC-SEMPPR predictions of gene expression are well-correlated with empiri-194

cally measured gene expression195

After determining the best model fit between the ConstMut and VarMut models for each species,196

we find the median Spearman rank correlation between predicted and empirical estimates of gene197
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expression (i.e., ϕ vs. RNA-seq) across all species is 0.51 with 95% of species having a correlation198

> 0.26 (Figure 3). We emphasize the empirical gene expression data are based on RNA-seq data199

from a subset of 49 yeasts [28] mapped across species based on a list of one-to-one orthologs200

[23]. We find the correlation between predicted and empirical estimates decreased relative to201

the RNA-seq reference species as the divergence time between the two species increased (Figure202

S4, Spearman rank correlation −0.14, p = 0.016). Regardless, the positive correlation between203

predicted (i.e., based solely on codon usage) and empirical gene expression indicates prevalent204

translational selection on codon usage across the Saccharomycotina subphylum.205

Tree Spearman correlation
Obs. vs. Pred. Gene Expr.

0 100 200 300 400 −1.0 −0.5 0.0 0.5 1.0

Clade

Alloascoideaceae

CUG−Ser1

CUG−Ser2

Dipodascaceae/Trichomonascaceae

Lipomycetaceae

Phaffomycetaceae

Pichiaceae

Saccharomycetaceae

Saccharomycodaceae

Sporopachydermia clade

Trigonopsidaceae

Figure 3: Within-species correlation between observed empirical gene expression measured
via RNA-seq and ROC-SEMPPR predicted gene expression ϕ based on codon usage bias.
For most species, empirical gene expression were taken from the closest relative for which
such estimates were available. Solid lines indicate cases where the Spearman rank correlation
was statistically significant; dashed lines indicate non-significance.
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Selection coefficients are well-correlated with the predicted speed of elongation206

within species207

As selection coefficients ∆η reflect selection against a codon relative to its synonyms, translational208

selection will lead to a positive correlation between selection coefficients and ribosome waiting times209

(from here on out referred to as ”waiting times”). We used the inverse of the relative weights for210

the tRNA adaptation index (tAI) as a proxy for waiting times [33]. Surprisingly, we find numerous211

codons do not have a corresponding tRNA based on the identified tRNA genes and standard wobble212

rules, implying inefficient elongation of these codons. Although many of these are likely spuriously213

missed tRNA genes by tRNAScan-SE, we note a lack of tRNA genes recognizing proline codons CC-214

C/CCT in the clades CUG-Ser2 (2/4 species), Phaffomycetaceae (34/34 species), Pichiaceae (46/61215

species), and Saccharomycodaceae (8/8) species (Figure S5). A gene encoding Pro-tRNAUGGcodon216

is present in each of these species, but not at appreciably different amounts than observed in the217

other species (Welch two-sample t-test, p = 0.7742). Assuming the corresponding tRNA genes are218

truly missing in these clades, this suggests the occurrence of super-wobbling for proline, whereby219

an unmodified U34 allows a tRNA to bind all 4 codons [34].220

We highlight two species: Candida albicans and Starmera amethionina, both of which were221

previously determined to have little adaptive codon usage related to translational selection (Figure222

4A,B) [11]. We find a strong positive correlation between waiting times and selection coefficients223

in both species, indicating translational selection is a prevalent force shaping CUB within these224

yeasts. In the case of C. albicans, previous difficulty in detecting translational selection was likely225

due to the failure to account for within-genome variation in non-adaptive nucleotide biases [28].226

However, the VarMut model performed significantly worse for S. amethionina (Spearman rank227

correlation between ROC-SEMPPR predicted and empirical gene expression of 0.348 vs. -0.0819228

for ConstMut and VarMut models, respectively). The median Spearman rank correlation between229

selection coefficients and waiting times across all 327 budding yeasts was 0.78, with a range of230

0.17 to 0.93 (324/327 species p < 0.05, Figure 4C). The positive correlation between selection231

coefficients and waiting times indicates translational selection is a prevalent force shaping CUB232

across the Saccharomycotina subphylum.233
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Figure 4: Comparisons of relative elongation waiting times (based on tRNA gene copy num-
bers) and selection coefficients ∆η for (A) Candida albicans and (B) Starmera amethionina.
R indicates the Spearman rank correlation. (C) Correlation as in (A) and (B) across all
species (right panel) ordered by the phylogeny of the budding yeasts (left panel). Species
are colored by major clade as defined in [11]. Solid lines indicate cases where the Spearman
rank correlation was statistically significant; dashed lines indicate non-significance.

Across-species variation in natural selection on codon usage varies with the234

tRNA pool235

Given the positive correlation between natural selection and waiting times within species, the236

evolution of the tRNA pool is hypothesized to be a driver of differences in natural selection on237

codon usage. We exclude the 34 species outlier species indicated by the hierarchical clustering of238

selection coefficients because these species could obfuscate the general relationship between selection239

coefficients and the tRNA pool. Previous work found the overall strength of selection on codon240

usage increased with the number of translation resources, supposedly reflecting increased selection241
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on growth rate [3, 35]. Along these lines, we find the mean absolute selection coefficients per species242

– which reflects the average strength of selection across all codons – is positively correlated with243

the total number of tRNA genes per genome, albeit weakly (Figure 5A, Spearman rank correlation244

R = 0.22, p = 0.00025). Our finding conflicts with [11], who found no significant relationship245

between S [33] (based on tAI and the effective number of codons, not to be confused with the246

population genetics parameter S = sNe) and the total number of tRNA genes after accounting247

for shared ancestry. We note S is not a theoretically justified estimate of natural selection on248

codon usage [3, 33]; perhaps unsurprisingly, mean absolute selection coefficients are only weakly249

correlated with S (Figure S6). Our results suggest selection on codon usage increases slightly with250

investment in translational resources, but other factors are likely driving differences in adaptive251

CUB. For example, translational selection is expected to result from differences in the waiting252

times of synonymous codons, which in turn could be driven by differences in the tRNA pool. We253

find the selection coefficients for 39 codons (out of 40, not including the ROC-SEMPPR reference254

codons for each amino acid) are positively correlated with waiting times across species (Figure 5B255

and C, Benjamini-Hochberg adjusted p < 0.05, see also Figure S7), consistent with across-species256

changes in the strength/direction of natural selection on codon usage being driven by evolution of257

the tRNA pool.258

Certain tRNA modifications alter the waiting times of a codon [36, 37]. Evolutionary changes to259

the functionality of tRNA modification enzymes may also signal shifts in the strength or direction of260

natural selection on codon usage. In S. cerevisiae, knockouts of the multimeric Elongator Complex261

protein (responsible for the U34 modification mcm5s2U) resulted in increased waiting times at262

codons AAA, CAA, and GAA [36, 37]. Given the impact of tRNA modifications on waiting263

times, across-species variation in tRNA modification enzyme activity may contribute to variation in264

natural selection on codon usage. Here, we determine the impact of differences in gene expression ϕ265

(as a proxy for overall enzyme activity) of the catalytic activity proteins of the Elongator Complex266

IKI3, ELP2, and ELP3. We observe correlations between predicted gene expression and selection267

coefficients for individual codons (e.g., Figure 6A for IKI3 expression vs. AAA selection). However,268

this does not control for other factors likely related to selection (e.g., tGCN) or expression of269

Elongator Complex proteins (e.g., genome-wide GC%). We performed phylogenetic generalized270
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Figure 5: Relationship between codon-specific waiting times (based on tGCN) and selection
coefficients ∆η. Phylogenetic independent contrasts (PIC) were used in all cases. Spearman
rank correlations R and associated p-values are reported. (A) Comparison of mean absolute
selection coefficients |∆η| and the total number of tRNA genes across species. (B) Example
scatter-plot showing the relationship between waiting times and selection coefficients ∆η for
codon CAA (relative to CAG) across species. (C) Bar plot representing the Spearman rank
correlations between waiting times and selection coefficients ∆η across species for all codons.
“*” indicate statistical significance p < 0.05 after correcting for multiple hypothesis testing
via Benjamini-Hochberg.

least squares via the phylolm R package to determine the impact of the IKI3, ELP2, and ELP3 on271

natural selection while controlling for changes to tGCN and genome-wide GC%. Unsurprisingly,272

tGCN has the overall largest effect on variation in natural selection across species for all 3 codons.273
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However, we find that shifts in the expression levels of protein IKI3 contribute to variation in natural274

selection for 2 of the 3 codons. We note there is collinearity between many of our independent275

variables, which may result in overestimating our standard errors; however, these correlations are276

weak (for example, Figure S8). Taken together, our results suggest changes to tRNA modification277

enzyme activity or expression have a modest contribution to changes in selection on codon usage.278
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Figure 6: Relationship between across-species variation in natural selection on codon usage
and across-species variation in gene expression of proteins forming the tRNA modification
enzyme Elongator Complex (IKI3, ELP2, ELP3). (A) Example scatter-plot showing the
relationship between the selection coefficients ∆η of codon CAA and gene expression of
IKI3. (B) Bar plot representing the effects (i.e., PGLS slopes) of Elongator Complex gene
expression, tGCN, and genome-wide GC% on variation in PGLS selection coefficients of
codons recognized by tRNA modified by the Elongator Complex.

Discussion279

The direction and degree of codon usage bias (CUB) varies across species. Theoretically justified280

estimates of the underlying microevolutionary processes that shape CUB within a species and how281

these relate to molecular mechanisms are critical for understanding the causes of the observed282

macroevolutionary variation in CUB. We applied a population genetics model ROC-SEMPPR to283

the protein-coding sequences of 327 Saccharomycotina budding yeasts [11, 23] to estimate natural284

selection and mutation biases at codon-level resolution for all species [10, 24, 38]. The formula-285

tion of ROC-SEMPPR and its predecessors assume the only non-adaptive directional force (i.e.,286
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favoring one synonym over another) shaping codon usage bias is mutation bias, but many other287

relevant directional non-adaptive processes exist. This includes but is not limited to GC-biased288

gene conversion [17] and lateral gene transfer or introgressions [26]. As ROC-SEMPPR quantifies289

natural selection on codon usage via changes to gene expression, all non-adaptive processes shaping290

codon usage uncorrelated with gene expression are absorbed into the mutation bias parameter.291

This is particularly problematic if these processes cause genome-wide variation in the non-adaptive292

nucleotide background: ROC-SEMPPR is most likely to mistake this variation to be the result of293

natural selection [28]. We built upon our recent work coupling an unsupervised machine learning294

approach with ROC-SEMPPR approach to identify protein-coding sequences subject to different295

non-adaptive nucleotide biases. Across the 327 yeasts, we find 18% of species exhibited significant296

within-genome variation in non-adaptive nucleotide biases. Previously, we found protein-coding297

sequences assigned to the different sets were largely differentiated based on GC3% and tended to298

be colocalized along chromosomes, leading to regions of low and high GC3% content [28]. Within-299

genome variation in non-adaptive nucleotide biases could be due to several processes; prominent300

among these is GC-biased gene conversion in which regions of high recombination are expected301

to have higher GC content [17]. Although we have no direct evidence of GC-biased gene con-302

version, Saccharomycotina yeasts better fit by the VarMut model often show clear non-adaptive303

biases towards GC-ending codons. Surprisingly, yeasts exhibiting within-genome variation of non-304

adaptive biases are often phylogenetically distant. Further work is needed to elucidate the causes305

of within-genome variation in non-adaptive nucleotide biases.306

Translational selection (i.e., natural selection for translation efficiency) is a prominent hypothe-307

sis explaining adaptive CUB, particularly in microbes [4]. Most of the Saccharomycotina subphylum308

exhibits evidence of translational selection, including correlations between predicted and empiri-309

cal estimates of gene expression, and correlations between selection coefficients with waiting times310

within species. Under translational selection, we expect across-species changes in selection on codon311

usage to correlate with changes to the tRNA pool. Across species, natural selection on codon usage312

is generally correlated with waiting times of codons, strong evidence for a key role of the tRNA313

pool in shaping natural selection on codon usage. As further evidence for the role of the tRNA314

pool, changes to the expression levels of the Elongator Complex – a key tRNA modification enzyme315
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– are correlated with changes to natural selection on codons AAA, CAA, and GAA across species.316

Previous studies investigated how codon usage changes with the tRNA pool on macroevolutionary317

timescales [5, 20], but ours is the first to directly test how variation in natural selection on codon318

usage reflect evolutions variation of tRNA pool at the level of individual codons.319

Across species changes to natural selection on codon usage are correlated with the waiting320

times, but many of these correlations are moderate to weak. Many factors may be obscuring this321

relationship. First, empirical estimates of waiting times from ribosome profiling data are imperfectly322

(albeit moderately to strongly) correlated with tRNA-based proxies [39, 40]. Second, our estimates323

of natural selection are expected to average over different selective pressures that may also scale324

with gene expression, further obscuring the relationship between selection on codon usage and the325

tRNA pool. For example, selection against translation errors (missense errors, nonsense errors,326

etc.) is also expected to scale with gene expression [12, 41, 42], but the most efficient codon may327

not always be the most accurate codon [43]. Additionally, selective pressures on CUB restricted to328

specific regions of a protein-coding sequence, such as selection against mRNA secondary structure329

around the 5’-end [44], also shape adaptive CUB. How different selective pressures interplay to shape330

the observed CUB remains an open question and will necessitate the development of more nuanced331

models that can separate different forms of adaptive CUB. Finally, a key question regarding changes332

in natural selection on codon usage is the relative importance of changes to the effective population333

size Ne (which modulates the impact of genetic drift) vs. the unscaled selection coefficient s (note334

that our selection coefficients ∆η reflect the scaled selection coefficients S = sNe in a gene of average335

of expression ϕ = 1). With the current data, we cannot decompose our scaled selection coefficients336

∆η into the effective population size and the unscaled selection coefficients (which is a function of337

both waiting times and the energetic cost of ribosome pausing, see [24] for more details) As such,338

we cannot say which contributes more to across species variation in adaptive CUB. However, our339

work indicates changes to the unscaled selection coefficients s via changes to the tRNA pool are340

prominent in driving changes to natural selection on codon usage, and thus shaping variation in341

adaptive CUB across species.342

Perhaps our most surprising finding was that microevolutionary processes shaping CUB across343

the Saccharomycotina subphylum are highly variable across closely related species. This was evident344
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by (a) the generally poor agreement between the clustering of parameters and the phylogeny and (b)345

the overall low estimates of phylogenetic signal based on a multivariate version of Blomberg’sK [30].346

Interestingly, estimates of natural selection were more similar than mutation biases between closely347

related species. Consistent with this, estimates of stabilizing selection were generally greater for348

the mutation bias estimates than natural selection. This suggests the underlying molecular factors349

shaping mutation biases (e.g., mismatch repair) are generally under stronger stabilizing selection350

than those relevant to natural selection on codon usage (e.g., the tRNA pool). This should not351

distract from the larger point that both traits are highly variable across species, ultimately driving352

variation in CUB.353

Hierarchical clustering revealed 34 of the 327 budding yeast were poorly fit by ROC-SEMPPR,354

at least relative to other species. On average, ROC-SEMPPR parameter estimates for these species355

were more weakly correlated with empirical estimates of gene expression and codon-specific waiting356

times. These correlations were often positive, suggesting possible isolated shifts in the direction of357

natural selection acting on codon usage. Based on the poor model fit, it is possible that these species358

(1) have reduced natural selection acting on codon usage below the drift barrier [45], possibly due359

to reduced effective population sizes or (2) additional evolutionary forces acting on codon usage360

that further obscure signals of natural selection related to protein synthesis. These species serve as361

excellent starting points for future studies to elucidate the complex interplay of evolutionary forces362

that shape CUB.363

Materials and methods364

We obtained genome sequences, associated annotation files, the Saccharomycotina species tree,365

and a list of one-to-one orthologs from previous work [23]. We excluded mitochondrial genes,366

protein-coding sequences with non-canonical start codons, internal stop codons, and sequences367

whose lengths were not a multiple of three from all analyses. We queried all protein sequences368

against a BLAST database built from sequences in the MiToFun database to identify and remove369

mitochondrial sequences (http://mitofun.biol.uoa.gr/). Empirical gene expression measure-370

ments were taken from [28] and the sources cited therein. Briefly, adapters for each sequence were371
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trimmed using fastp [46], and genes were quantified using kallisto [47]. Transcripts-per-million372

(TPMs) were re-calculated for each transcript by rounding raw read counts to the nearest whole373

number [48].374

Analyzing codon usage patterns with ROC-SEMPPR375

The Ribosomal Overhead Cost version of the Stochastic Evolutionary Model of Protein Production

Rates (ROC-SEMPPR) is implemented in a Bayesian framework. This allows for the simultaneous

estimation of codon-specific selection coefficients and mutation bias, as well as gene-specific esti-

mates of the evolutionary average gene expression by assuming gene expression follows a log-normal

distribution [24]. ROC-SEMPPR does not require empirical gene expression data, meaning it can

be applied to any species with annotated protein-coding sequences. For any amino acid with naa

synonymous codons, the probability pi,g of observing codon i in gene g is defined by the equation

pi,g =
e−∆Mi−∆ηiϕg∑naa
j e−∆Mj−∆ηjϕg

(1)

where ∆Mi and ∆ηi represent mutation bias and selection coefficient of codon i relative to a376

reference synonymous codon (arbitrarily chosen as the alphabetically last codon), and ϕg represents377

gene expression of gene g which follows from the steady-state distribution of fixed genotypes under378

selection-mutation-drift equilibrium [10, 24, 49]. For each gene, the observed codon counts for an379

amino acid are expected to follow a multinomial distribution with the probability of observing a380

codon defined by Equation 1. Given the codon counts and the assumption that gene expression381

follows a lognormal distribution, ROC-SEMPPR estimates the parameters that best fit the codon382

counts via a Markov Chain Monte Carlo simulation approach (MCMC). ROC-SEMPPR was fit383

to 327 species using the R package AnaCoDa [50]. For each species, the MCMC chains were run384

for 200,000 iterations, keeping every 10th iteration. The first 50,000 iterations were discarded as385

burn-in. Two separate MCMC chains were run for each species and parameter estimates were386

compared to assess convergence.387

Previous work with ROC-SEMPPR separated serine codons TCN (where N is any of the other388

four nucleotides) and AGY (where Y is C or T) into separate groups of codons for the analysis389
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[10, 24, 26]. ROC-SEMPPR assumes each mutation introduced to a population is fixed or lost390

before the arrival of the next mutation (i.e., “weak mutation” Neµ << 1). The model also assumes391

fixed amino acid sequences for all protein-coding sequences. As a result, going between these two392

groups of serine codons would require the fixation of a non-serine amino acid before returning to393

serine via the fixation of another mutation, violating the fixed amino acid sequence assumption. A394

local version of AnaCoDa was created to handle species for which CTG codes for serine. For these395

species, CTG was treated as a third codon group for serine, similar to ATG (methionine) or TGG396

(tryptophan), which have no synonyms.397

Identifying within-genome variation in codon usage bias398

We recently found numerous Saccharomycotina yeasts exhibit variation in the non-adaptive nu-399

cleotide biases shaping GC% within a genome that obscures signals of natural selection on codon400

usage [28]. We followed the same procedure to hypothesize genes evolving under different non-401

adaptive nucleotide biases across all 327 budding yeasts. For each species, correspondence analysis402

(CA) was applied to the absolute codon frequencies of each annotated protein-coding sequence403

using the ca R package [51]. Protein-coding sequences were then clustered into two groups based404

on the first four principal components from the CA using the CLARA algorithm implemented in405

the cluster R package, which is designed to perform k-medoids clustering on large datasets [52]. See406

our previous work for more details on the CLARA clustering algorithm [28]. For each species, the407

cluster with the lower median GC3% was designated as the “Lower GC3% Set”, and the cluster408

with the higher median GC3% as the “Higher GC3% Set”. ROC-SEMPPR was fit to the protein-409

coding sequences of each species, assuming selection coefficient and mutation bias parameters were410

the same between the two clusters, which we refer to as the “ConstMut” model. Similarly, the411

protein-coding sequences of each species were also fit while allowing the mutation bias to vary412

across sequences based on their assigned cluster, which we will refer to as the “VarMut” model.413

For the VarMut model, selection coefficients were assumed to be the same across the Higher and414

Lower GC3% sets.415

ROC-SEMPPR predictions of gene expression ϕ for each protein-coding sequence were com-416

pared to empirical estimates of mRNA abundance using the Spearman correlation coefficient using417
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processed data from our previous work [28]. For species lacking RNA-seq data, we compared each418

species’ predicted gene expression to the empirical gene expression of its closest relative for which419

the latter was available. This is reasonable given that mRNA abundances in yeasts evolve under420

stabilizing selection [53]. The VarMut model was considered an improved fit over the ConstMut421

model if the correlation between predicted and empirical gene expression estimates was 25% greater422

relative to the ConstMut model.423

Comparing codon-specific parameters across species424

Across-species and across-codon variation in selection coefficients ∆η and mutation bias ∆M were425

compared using hierarchical clustering using the “complete linkage” algorithm with distances de-426

termined by the 1−R, where R is the pairwise Spearman rank correlation. Results were visualized427

using heatmaps as implemented in the R package ComplexHeatmap. For each codon-specific428

parameter estimate, we quantified the similarity between the phylogenetic tree and the hierarchical429

clustering via a cophenetic correlation, which measures how well two dendrograms preserve the430

pairwise distances between data points. As orthogonal analyses, we quantified the overall phy-431

logenetic signal (i.e., how similar species are to their closest relatives) via a multivariate version432

of Blomberg’s K (Kmulti) as implemented in the R package geomorph. As stabilizing selection433

toward a single optimum value degrades phylogenetic signal [31], we also fit an Ornstein-Uhlenbeck434

[54] model of trait evolution via the R package geiger [32] to the codon-specific parameters (using435

the standard deviation of the posterior distribution as measurement error), with the strength of436

stabilizing selection α compared between selection and mutation bias estimates using a Wilcox rank437

sum test. For the VarMut species, we performed these analyses using mutation bias estimates from438

either the Lower GC3% set or the Higher GC3% set.439

Determining potential causes for across-species variation in codon-440

specific parameters441

Across-species correlations between traits were assessed after performing phylogenetic independent442

contrasts (PIC) as implemented in the R package ape. Phylogenetic regressions were performed443

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615277doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615277
http://creativecommons.org/licenses/by/4.0/


using the R package phylolm using Pagel’s λ model [55]. Multiple comparisons were accounted444

for via the Benjamini-Hochberg procedure with a false discovery rate of 0.05.445

Estimating codon-specific ribosome waiting times446

Estimates of codon-specific elongation rates were obtained based on the weights used to calculate447

the tRNA Adaptation Index (tAI) [33]. We ran the latest version of tRNA-ScanSE on the genomic448

FASTA sequences with mitochondrial genomes removed to obtain a tRNA gene copy (tGCN)449

for each species under consideration [56]. To allow for potential variation in wobble efficiency450

across species, we estimated wobble parameters by maximizing the Spearman rank correlation451

coefficient between ROC-SEMPPR predicted gene expression and tAI using the R package tAI452

[57]. ROC-SEMPPR estimates reflect selection against a codon relative to a reference synonymous453

codon (implemented as the alphabetically last codon for each amino acid in AnaCoDa). As we454

are primarily interested in comparing tRNA-based waiting times to selection coefficients ∆η, we455

calculated the log ratio of the weights between a codon and its respective reference codon i.e.,456

waa,i = log(Waaref /Wi) (2)

where aaref indicates the reference codon for amino acid aa and Wi gives the unnormalized457

weight as calculated in tAI. This contrasts with the normal formulation of tAI, which typically458

normalizes all weights relative to the maximum weight across all codons (regardless of amino acid)459

[33]. In some cases, the reference codon for an amino acid could not be translated based on the460

given tRNA genes and standard wobble rules. As our goal is to test if across-species changes to461

selection are generally correlated with changes to the tRNA pool, we opted to drop these cases462

from our analyses rather than have potentially different reference codons for each species.463

Comparing selection coefficients ∆η with tRNA modification gene expression464

Removal of the mcmc5s2U modification at U34 of tRNA recognizing codon AAA (Lys), GAA (Glu),465

and CAA (Gln) increases ribosome waiting times at these codons in S. cerevisiae [36, 37]. The466
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protein-coding sequences encoding tRNA modifications enzymes that make up the catalytic center467

of the Elongator Complex – IKI3 (ELP1), ELP2, and ELP3 – were identified in each Saccha-468

romycotina yeasts tRNA modifications known to impact translation efficiency using a previously469

determined list of one-to-one orthologs [23]. The relevant ROC-SEMPPR gene expression estimates470

ϕ were obtained for each gene and were compared to the selection coefficients ∆η for AAA, GAA,471

and CAA using multivariate phylogenetic regressions assuming a Pagel’s λ model (3 regressions,472

one for each codon) as implemented in the R package phylolm. In addition to the effects of473

each of the Elongator Complex proteins, we also included the effects of the corresponding tGCN474

(specifically, log(tGCN)) for each of the codons and the genome-wide GC% in our regressions, i.e.475

∆ηCodon ∼ ϕIKI3 + ϕELP2 + ϕELP3 + tGCNCodon +GC%+ Intercept. Each independent variable476

was transformed into a Z-score to make the effects of each variable more comparable.477
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